d7af1e6ca6ac8d88efc61cd6ee373b089624061c
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2009.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, and distribute this software
13 and its documentation for any purpose and without fee is hereby
14 granted, provided that the above copyright notice appear in all
15 copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed.
42 */
43 bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 uint16_t EndAddr = 0x0000;
94
95 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
96 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
97 * the loaded application code.
98 */
99 int main(void)
100 {
101 /* Configure hardware required by the bootloader */
102 SetupHardware();
103
104 /* Run the USB management task while the bootloader is supposed to be running */
105 while (RunBootloader || WaitForExit)
106 USB_USBTask();
107
108 /* Reset configured hardware back to their original states for the user application */
109 ResetHardware();
110
111 /* Start the user application */
112 AppStartPtr();
113 }
114
115 /** Configures all hardware required for the bootloader. */
116 void SetupHardware(void)
117 {
118 /* Disable watchdog if enabled by bootloader/fuses */
119 MCUSR &= ~(1 << WDRF);
120 wdt_disable();
121
122 /* Disable clock division */
123 clock_prescale_set(clock_div_1);
124
125 /* Relocate the interrupt vector table to the bootloader section */
126 MCUCR = (1 << IVCE);
127 MCUCR = (1 << IVSEL);
128
129 /* Initialize the USB subsystem */
130 USB_Init();
131 }
132
133 /** Resets all configured hardware required for the bootloader back to their original states. */
134 void ResetHardware(void)
135 {
136 /* Shut down the USB subsystem */
137 USB_ShutDown();
138
139 /* Relocate the interrupt vector table back to the application section */
140 MCUCR = (1 << IVCE);
141 MCUCR = 0;
142 }
143
144 /** Event handler for the USB_UnhandledControlRequest event. This is used to catch standard and class specific
145 * control requests that are not handled internally by the USB library (including the DFU commands, which are
146 * all issued via the control endpoint), so that they can be handled appropriately for the application.
147 */
148 void EVENT_USB_Device_UnhandledControlRequest(void)
149 {
150 /* Get the size of the command and data from the wLength value */
151 SentCommand.DataSize = USB_ControlRequest.wLength;
152
153 switch (USB_ControlRequest.bRequest)
154 {
155 case DFU_DNLOAD:
156 Endpoint_ClearSETUP();
157
158 /* Check if bootloader is waiting to terminate */
159 if (WaitForExit)
160 {
161 /* Bootloader is terminating - process last received command */
162 ProcessBootloaderCommand();
163
164 /* Indicate that the last command has now been processed - free to exit bootloader */
165 WaitForExit = false;
166 }
167
168 /* If the request has a data stage, load it into the command struct */
169 if (SentCommand.DataSize)
170 {
171 while (!(Endpoint_IsOUTReceived()))
172 {
173 if (USB_DeviceState == DEVICE_STATE_Unattached)
174 return;
175 }
176
177 /* First byte of the data stage is the DNLOAD request's command */
178 SentCommand.Command = Endpoint_Read_Byte();
179
180 /* One byte of the data stage is the command, so subtract it from the total data bytes */
181 SentCommand.DataSize--;
182
183 /* Load in the rest of the data stage as command parameters */
184 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
185 Endpoint_BytesInEndpoint(); DataByte++)
186 {
187 SentCommand.Data[DataByte] = Endpoint_Read_Byte();
188 SentCommand.DataSize--;
189 }
190
191 /* Process the command */
192 ProcessBootloaderCommand();
193 }
194
195 /* Check if currently downloading firmware */
196 if (DFU_State == dfuDNLOAD_IDLE)
197 {
198 if (!(SentCommand.DataSize))
199 {
200 DFU_State = dfuIDLE;
201 }
202 else
203 {
204 /* Throw away the filler bytes before the start of the firmware */
205 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
206
207 /* Throw away the page alignment filler bytes before the start of the firmware */
208 DiscardFillerBytes(StartAddr % SPM_PAGESIZE);
209
210 /* Calculate the number of bytes remaining to be written */
211 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
212
213 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
214 {
215 /* Calculate the number of words to be written from the number of bytes to be written */
216 uint16_t WordsRemaining = (BytesRemaining >> 1);
217
218 union
219 {
220 uint16_t Words[2];
221 uint32_t Long;
222 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
223
224 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
225 uint8_t WordsInFlashPage = 0;
226
227 while (WordsRemaining--)
228 {
229 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
230 if (!(Endpoint_BytesInEndpoint()))
231 {
232 Endpoint_ClearOUT();
233
234 while (!(Endpoint_IsOUTReceived()))
235 {
236 if (USB_DeviceState == DEVICE_STATE_Unattached)
237 return;
238 }
239 }
240
241 /* Write the next word into the current flash page */
242 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE());
243
244 /* Adjust counters */
245 WordsInFlashPage += 1;
246 CurrFlashAddress.Long += 2;
247
248 /* See if an entire page has been written to the flash page buffer */
249 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
250 {
251 /* Commit the flash page to memory */
252 boot_page_write(CurrFlashPageStartAddress);
253 boot_spm_busy_wait();
254
255 /* Check if programming incomplete */
256 if (WordsRemaining)
257 {
258 CurrFlashPageStartAddress = CurrFlashAddress.Long;
259 WordsInFlashPage = 0;
260
261 /* Erase next page's temp buffer */
262 boot_page_erase(CurrFlashAddress.Long);
263 boot_spm_busy_wait();
264 }
265 }
266 }
267
268 /* Once programming complete, start address equals the end address */
269 StartAddr = EndAddr;
270
271 /* Re-enable the RWW section of flash */
272 boot_rww_enable();
273 }
274 else // Write EEPROM
275 {
276 while (BytesRemaining--)
277 {
278 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
279 if (!(Endpoint_BytesInEndpoint()))
280 {
281 Endpoint_ClearOUT();
282
283 while (!(Endpoint_IsOUTReceived()))
284 {
285 if (USB_DeviceState == DEVICE_STATE_Unattached)
286 return;
287 }
288 }
289
290 /* Read the byte from the USB interface and write to to the EEPROM */
291 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte());
292
293 /* Adjust counters */
294 StartAddr++;
295 }
296 }
297
298 /* Throw away the currently unused DFU file suffix */
299 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
300 }
301 }
302
303 Endpoint_ClearOUT();
304
305 Endpoint_ClearStatusStage();
306
307 break;
308 case DFU_UPLOAD:
309 Endpoint_ClearSETUP();
310
311 while (!(Endpoint_IsINReady()))
312 {
313 if (USB_DeviceState == DEVICE_STATE_Unattached)
314 return;
315 }
316
317 if (DFU_State != dfuUPLOAD_IDLE)
318 {
319 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
320 {
321 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
322 that the memory isn't blank, and the host is requesting the first non-blank address */
323 Endpoint_Write_Word_LE(StartAddr);
324 }
325 else
326 {
327 /* Idle state upload - send response to last issued command */
328 Endpoint_Write_Byte(ResponseByte);
329 }
330 }
331 else
332 {
333 /* Determine the number of bytes remaining in the current block */
334 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
335
336 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
337 {
338 /* Calculate the number of words to be written from the number of bytes to be written */
339 uint16_t WordsRemaining = (BytesRemaining >> 1);
340
341 union
342 {
343 uint16_t Words[2];
344 uint32_t Long;
345 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
346
347 while (WordsRemaining--)
348 {
349 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
350 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
351 {
352 Endpoint_ClearIN();
353
354 while (!(Endpoint_IsINReady()))
355 {
356 if (USB_DeviceState == DEVICE_STATE_Unattached)
357 return;
358 }
359 }
360
361 /* Read the flash word and send it via USB to the host */
362 #if (FLASHEND > 0xFFFF)
363 Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long));
364 #else
365 Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long));
366 #endif
367
368 /* Adjust counters */
369 CurrFlashAddress.Long += 2;
370 }
371
372 /* Once reading is complete, start address equals the end address */
373 StartAddr = EndAddr;
374 }
375 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
376 {
377 while (BytesRemaining--)
378 {
379 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
380 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
381 {
382 Endpoint_ClearIN();
383
384 while (!(Endpoint_IsINReady()))
385 {
386 if (USB_DeviceState == DEVICE_STATE_Unattached)
387 return;
388 }
389 }
390
391 /* Read the EEPROM byte and send it via USB to the host */
392 Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr));
393
394 /* Adjust counters */
395 StartAddr++;
396 }
397 }
398
399 /* Return to idle state */
400 DFU_State = dfuIDLE;
401 }
402
403 Endpoint_ClearIN();
404
405 Endpoint_ClearStatusStage();
406 break;
407 case DFU_GETSTATUS:
408 Endpoint_ClearSETUP();
409
410 /* Write 8-bit status value */
411 Endpoint_Write_Byte(DFU_Status);
412
413 /* Write 24-bit poll timeout value */
414 Endpoint_Write_Byte(0);
415 Endpoint_Write_Word_LE(0);
416
417 /* Write 8-bit state value */
418 Endpoint_Write_Byte(DFU_State);
419
420 /* Write 8-bit state string ID number */
421 Endpoint_Write_Byte(0);
422
423 Endpoint_ClearIN();
424
425 Endpoint_ClearStatusStage();
426 break;
427 case DFU_CLRSTATUS:
428 Endpoint_ClearSETUP();
429
430 /* Reset the status value variable to the default OK status */
431 DFU_Status = OK;
432
433 Endpoint_ClearStatusStage();
434 break;
435 case DFU_GETSTATE:
436 Endpoint_ClearSETUP();
437
438 /* Write the current device state to the endpoint */
439 Endpoint_Write_Byte(DFU_State);
440
441 Endpoint_ClearIN();
442
443 Endpoint_ClearStatusStage();
444 break;
445 case DFU_ABORT:
446 Endpoint_ClearSETUP();
447
448 /* Reset the current state variable to the default idle state */
449 DFU_State = dfuIDLE;
450
451 Endpoint_ClearStatusStage();
452 break;
453 }
454 }
455
456 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
457 * discard unused bytes in the stream from the host, including the memory program block suffix.
458 *
459 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
460 */
461 static void DiscardFillerBytes(uint8_t NumberOfBytes)
462 {
463 while (NumberOfBytes--)
464 {
465 if (!(Endpoint_BytesInEndpoint()))
466 {
467 Endpoint_ClearOUT();
468
469 /* Wait until next data packet received */
470 while (!(Endpoint_IsOUTReceived()))
471 {
472 if (USB_DeviceState == DEVICE_STATE_Unattached)
473 return;
474 }
475 }
476 else
477 {
478 Endpoint_Discard_Byte();
479 }
480 }
481 }
482
483 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
484 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
485 * appropriate handler function.
486 */
487 static void ProcessBootloaderCommand(void)
488 {
489 /* Check if device is in secure mode */
490 if (IsSecure)
491 {
492 /* Don't process command unless it is a READ or chip erase command */
493 if (!(((SentCommand.Command == COMMAND_WRITE) &&
494 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
495 (SentCommand.Command == COMMAND_READ)))
496 {
497 /* Set the state and status variables to indicate the error */
498 DFU_State = dfuERROR;
499 DFU_Status = errWRITE;
500
501 /* Stall command */
502 Endpoint_StallTransaction();
503
504 /* Don't process the command */
505 return;
506 }
507 }
508
509 /* Dispatch the required command processing routine based on the command type */
510 switch (SentCommand.Command)
511 {
512 case COMMAND_PROG_START:
513 ProcessMemProgCommand();
514 break;
515 case COMMAND_DISP_DATA:
516 ProcessMemReadCommand();
517 break;
518 case COMMAND_WRITE:
519 ProcessWriteCommand();
520 break;
521 case COMMAND_READ:
522 ProcessReadCommand();
523 break;
524 case COMMAND_CHANGE_BASE_ADDR:
525 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
526 Flash64KBPage = SentCommand.Data[2];
527
528 break;
529 }
530 }
531
532 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
533 * in the StartAddr and EndAddr global variables.
534 */
535 static void LoadStartEndAddresses(void)
536 {
537 union
538 {
539 uint8_t Bytes[2];
540 uint16_t Word;
541 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
542 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
543
544 /* Load in the start and ending read addresses from the sent data packet */
545 StartAddr = Address[0].Word;
546 EndAddr = Address[1].Word;
547 }
548
549 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
550 * to write subsequent data from the host into the specified memory.
551 */
552 static void ProcessMemProgCommand(void)
553 {
554 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
555 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
556 {
557 /* Load in the start and ending read addresses */
558 LoadStartEndAddresses();
559
560 /* If FLASH is being written to, we need to pre-erase the first page to write to */
561 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
562 {
563 union
564 {
565 uint16_t Words[2];
566 uint32_t Long;
567 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
568
569 /* Erase the current page's temp buffer */
570 boot_page_erase(CurrFlashAddress.Long);
571 boot_spm_busy_wait();
572 }
573
574 /* Set the state so that the next DNLOAD requests reads in the firmware */
575 DFU_State = dfuDNLOAD_IDLE;
576 }
577 }
578
579 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
580 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
581 * blank check command.
582 */
583 static void ProcessMemReadCommand(void)
584 {
585 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
586 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
587 {
588 /* Load in the start and ending read addresses */
589 LoadStartEndAddresses();
590
591 /* Set the state so that the next UPLOAD requests read out the firmware */
592 DFU_State = dfuUPLOAD_IDLE;
593 }
594 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
595 {
596 uint32_t CurrFlashAddress = 0;
597
598 while (CurrFlashAddress < BOOT_START_ADDR)
599 {
600 /* Check if the current byte is not blank */
601 #if (FLASHEND > 0xFFFF)
602 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
603 #else
604 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
605 #endif
606 {
607 /* Save the location of the first non-blank byte for response back to the host */
608 Flash64KBPage = (CurrFlashAddress >> 16);
609 StartAddr = CurrFlashAddress;
610
611 /* Set state and status variables to the appropriate error values */
612 DFU_State = dfuERROR;
613 DFU_Status = errCHECK_ERASED;
614
615 break;
616 }
617
618 CurrFlashAddress++;
619 }
620 }
621 }
622
623 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
624 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
625 */
626 static void ProcessWriteCommand(void)
627 {
628 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
629 {
630 /* Indicate that the bootloader is terminating */
631 WaitForExit = true;
632
633 /* Check if empty request data array - an empty request after a filled request retains the
634 previous valid request data, but initializes the reset */
635 if (!(SentCommand.DataSize))
636 {
637 if (SentCommand.Data[1] == 0x00) // Start via watchdog
638 {
639 /* Start the watchdog to reset the AVR once the communications are finalized */
640 wdt_enable(WDTO_250MS);
641 }
642 else // Start via jump
643 {
644 /* Load in the jump address into the application start address pointer */
645 union
646 {
647 uint8_t Bytes[2];
648 AppPtr_t FuncPtr;
649 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
650
651 AppStartPtr = Address.FuncPtr;
652
653 /* Set the flag to terminate the bootloader at next opportunity */
654 RunBootloader = false;
655 }
656 }
657 }
658 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
659 {
660 uint32_t CurrFlashAddress = 0;
661
662 /* Clear the application section of flash */
663 while (CurrFlashAddress < BOOT_START_ADDR)
664 {
665 boot_page_erase(CurrFlashAddress);
666 boot_spm_busy_wait();
667 boot_page_write(CurrFlashAddress);
668 boot_spm_busy_wait();
669
670 CurrFlashAddress += SPM_PAGESIZE;
671 }
672
673 /* Re-enable the RWW section of flash as writing to the flash locks it out */
674 boot_rww_enable();
675
676 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
677 IsSecure = false;
678 }
679 }
680
681 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
682 * commands such as device signature and bootloader version retrieval.
683 */
684 static void ProcessReadCommand(void)
685 {
686 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
687 const uint8_t SignatureInfo[3] = {AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
688
689 uint8_t DataIndexToRead = SentCommand.Data[1];
690
691 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
692 {
693 ResponseByte = BootloaderInfo[DataIndexToRead];
694 }
695 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
696 {
697 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
698 }
699 }