d057349c724773667b872c42d24582bbe8a490ca
[pub/USBasp.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2012.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
60 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
61 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
62 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
63 */
64 uint32_t MagicBootKey ATTR_NO_INIT;
65
66
67 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
68 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
69 * this will force the user application to start via a software jump.
70 */
71 void Application_Jump_Check(void)
72 {
73 // If the reset source was the bootloader and the key is correct, clear it and jump to the application
74 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
75 {
76 MagicBootKey = 0;
77 ((void (*)(void))0x0000)();
78 }
79 }
80
81 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
82 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
83 * the loaded application code.
84 */
85 int main(void)
86 {
87 /* Setup hardware required for the bootloader */
88 SetupHardware();
89
90 /* Turn on first LED on the board to indicate that the bootloader has started */
91 LEDs_SetAllLEDs(LEDS_LED1);
92
93 /* Enable global interrupts so that the USB stack can function */
94 sei();
95
96 while (RunBootloader)
97 {
98 CDC_Task();
99 USB_USBTask();
100 }
101
102 /* Disconnect from the host - USB interface will be reset later along with the AVR */
103 USB_Detach();
104
105 /* Unlock the forced application start mode of the bootloader if it is restarted */
106 MagicBootKey = MAGIC_BOOT_KEY;
107
108 /* Enable the watchdog and force a timeout to reset the AVR */
109 wdt_enable(WDTO_250MS);
110
111 for (;;);
112 }
113
114 /** Configures all hardware required for the bootloader. */
115 static void SetupHardware(void)
116 {
117 /* Disable watchdog if enabled by bootloader/fuses */
118 MCUSR &= ~(1 << WDRF);
119 wdt_disable();
120
121 /* Disable clock division */
122 clock_prescale_set(clock_div_1);
123
124 /* Relocate the interrupt vector table to the bootloader section */
125 MCUCR = (1 << IVCE);
126 MCUCR = (1 << IVSEL);
127
128 /* Initialize the USB and other board hardware drivers */
129 USB_Init();
130 LEDs_Init();
131
132 /* Bootloader active LED toggle timer initialization */
133 TIMSK1 = (1 << TOIE1);
134 TCCR1B = ((1 << CS11) | (1 << CS10));
135 }
136
137 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
138 ISR(TIMER1_OVF_vect, ISR_BLOCK)
139 {
140 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
141 }
142
143 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
144 * to relay data to and from the attached USB host.
145 */
146 void EVENT_USB_Device_ConfigurationChanged(void)
147 {
148 /* Setup CDC Notification, Rx and Tx Endpoints */
149 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
150 CDC_NOTIFICATION_EPSIZE, 1);
151
152 Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
153
154 Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
155 }
156
157 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
158 * the device from the USB host before passing along unhandled control requests to the library for processing
159 * internally.
160 */
161 void EVENT_USB_Device_ControlRequest(void)
162 {
163 /* Ignore any requests that aren't directed to the CDC interface */
164 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
165 (REQTYPE_CLASS | REQREC_INTERFACE))
166 {
167 return;
168 }
169
170 /* Activity - toggle indicator LEDs */
171 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
172
173 /* Process CDC specific control requests */
174 switch (USB_ControlRequest.bRequest)
175 {
176 case CDC_REQ_GetLineEncoding:
177 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
178 {
179 Endpoint_ClearSETUP();
180
181 /* Write the line coding data to the control endpoint */
182 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
183 Endpoint_ClearOUT();
184 }
185
186 break;
187 case CDC_REQ_SetLineEncoding:
188 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
189 {
190 Endpoint_ClearSETUP();
191
192 /* Read the line coding data in from the host into the global struct */
193 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
194 Endpoint_ClearIN();
195 }
196
197 break;
198 }
199 }
200
201 #if !defined(NO_BLOCK_SUPPORT)
202 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
203 * on the AVR910 protocol command issued.
204 *
205 * \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform
206 */
207 static void ReadWriteMemoryBlock(const uint8_t Command)
208 {
209 uint16_t BlockSize;
210 char MemoryType;
211
212 bool HighByte = false;
213 uint8_t LowByte = 0;
214
215 BlockSize = (FetchNextCommandByte() << 8);
216 BlockSize |= FetchNextCommandByte();
217
218 MemoryType = FetchNextCommandByte();
219
220 if ((MemoryType != 'E') && (MemoryType != 'F'))
221 {
222 /* Send error byte back to the host */
223 WriteNextResponseByte('?');
224
225 return;
226 }
227
228 /* Check if command is to read memory */
229 if (Command == 'g')
230 {
231 /* Re-enable RWW section */
232 boot_rww_enable();
233
234 while (BlockSize--)
235 {
236 if (MemoryType == 'F')
237 {
238 /* Read the next FLASH byte from the current FLASH page */
239 #if (FLASHEND > 0xFFFF)
240 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
241 #else
242 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
243 #endif
244
245 /* If both bytes in current word have been read, increment the address counter */
246 if (HighByte)
247 CurrAddress += 2;
248
249 HighByte = !HighByte;
250 }
251 else
252 {
253 /* Read the next EEPROM byte into the endpoint */
254 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
255
256 /* Increment the address counter after use */
257 CurrAddress += 2;
258 }
259 }
260 }
261 else
262 {
263 uint32_t PageStartAddress = CurrAddress;
264
265 if (MemoryType == 'F')
266 {
267 boot_page_erase(PageStartAddress);
268 boot_spm_busy_wait();
269 }
270
271 while (BlockSize--)
272 {
273 if (MemoryType == 'F')
274 {
275 /* If both bytes in current word have been written, increment the address counter */
276 if (HighByte)
277 {
278 /* Write the next FLASH word to the current FLASH page */
279 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
280
281 /* Increment the address counter after use */
282 CurrAddress += 2;
283 }
284 else
285 {
286 LowByte = FetchNextCommandByte();
287 }
288
289 HighByte = !HighByte;
290 }
291 else
292 {
293 /* Write the next EEPROM byte from the endpoint */
294 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
295
296 /* Increment the address counter after use */
297 CurrAddress += 2;
298 }
299 }
300
301 /* If in FLASH programming mode, commit the page after writing */
302 if (MemoryType == 'F')
303 {
304 /* Commit the flash page to memory */
305 boot_page_write(PageStartAddress);
306
307 /* Wait until write operation has completed */
308 boot_spm_busy_wait();
309 }
310
311 /* Send response byte back to the host */
312 WriteNextResponseByte('\r');
313 }
314 }
315 #endif
316
317 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
318 * to allow reception of the next data packet from the host.
319 *
320 * \return Next received byte from the host in the CDC data OUT endpoint
321 */
322 static uint8_t FetchNextCommandByte(void)
323 {
324 /* Select the OUT endpoint so that the next data byte can be read */
325 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
326
327 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
328 while (!(Endpoint_IsReadWriteAllowed()))
329 {
330 Endpoint_ClearOUT();
331
332 while (!(Endpoint_IsOUTReceived()))
333 {
334 if (USB_DeviceState == DEVICE_STATE_Unattached)
335 return 0;
336 }
337 }
338
339 /* Fetch the next byte from the OUT endpoint */
340 return Endpoint_Read_8();
341 }
342
343 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
344 * bank when full ready for the next byte in the packet to the host.
345 *
346 * \param[in] Response Next response byte to send to the host
347 */
348 static void WriteNextResponseByte(const uint8_t Response)
349 {
350 /* Select the IN endpoint so that the next data byte can be written */
351 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
352
353 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
354 if (!(Endpoint_IsReadWriteAllowed()))
355 {
356 Endpoint_ClearIN();
357
358 while (!(Endpoint_IsINReady()))
359 {
360 if (USB_DeviceState == DEVICE_STATE_Unattached)
361 return;
362 }
363 }
364
365 /* Write the next byte to the IN endpoint */
366 Endpoint_Write_8(Response);
367 }
368
369 /** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
370 * and send the appropriate response back to the host.
371 */
372 static void CDC_Task(void)
373 {
374 /* Select the OUT endpoint */
375 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
376
377 /* Check if endpoint has a command in it sent from the host */
378 if (!(Endpoint_IsOUTReceived()))
379 return;
380
381 /* Read in the bootloader command (first byte sent from host) */
382 uint8_t Command = FetchNextCommandByte();
383
384 if (Command == 'E')
385 {
386 RunBootloader = false;
387
388 /* Send confirmation byte back to the host */
389 WriteNextResponseByte('\r');
390 }
391 else if (Command == 'T')
392 {
393 FetchNextCommandByte();
394
395 /* Send confirmation byte back to the host */
396 WriteNextResponseByte('\r');
397 }
398 else if ((Command == 'L') || (Command == 'P'))
399 {
400 /* Send confirmation byte back to the host */
401 WriteNextResponseByte('\r');
402 }
403 else if (Command == 't')
404 {
405 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
406 WriteNextResponseByte(0x44);
407 WriteNextResponseByte(0x00);
408 }
409 else if (Command == 'a')
410 {
411 /* Indicate auto-address increment is supported */
412 WriteNextResponseByte('Y');
413 }
414 else if (Command == 'A')
415 {
416 /* Set the current address to that given by the host */
417 CurrAddress = (FetchNextCommandByte() << 9);
418 CurrAddress |= (FetchNextCommandByte() << 1);
419
420 /* Send confirmation byte back to the host */
421 WriteNextResponseByte('\r');
422 }
423 else if (Command == 'p')
424 {
425 /* Indicate serial programmer back to the host */
426 WriteNextResponseByte('S');
427 }
428 else if (Command == 'S')
429 {
430 /* Write the 7-byte software identifier to the endpoint */
431 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
432 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
433 }
434 else if (Command == 'V')
435 {
436 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
437 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
438 }
439 else if (Command == 's')
440 {
441 WriteNextResponseByte(AVR_SIGNATURE_3);
442 WriteNextResponseByte(AVR_SIGNATURE_2);
443 WriteNextResponseByte(AVR_SIGNATURE_1);
444 }
445 else if (Command == 'e')
446 {
447 /* Clear the application section of flash */
448 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
449 {
450 boot_page_erase(CurrFlashAddress);
451 boot_spm_busy_wait();
452 boot_page_write(CurrFlashAddress);
453 boot_spm_busy_wait();
454 }
455
456 /* Send confirmation byte back to the host */
457 WriteNextResponseByte('\r');
458 }
459 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
460 else if (Command == 'l')
461 {
462 /* Set the lock bits to those given by the host */
463 boot_lock_bits_set(FetchNextCommandByte());
464
465 /* Send confirmation byte back to the host */
466 WriteNextResponseByte('\r');
467 }
468 #endif
469 else if (Command == 'r')
470 {
471 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
472 }
473 else if (Command == 'F')
474 {
475 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
476 }
477 else if (Command == 'N')
478 {
479 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
480 }
481 else if (Command == 'Q')
482 {
483 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
484 }
485 #if !defined(NO_BLOCK_SUPPORT)
486 else if (Command == 'b')
487 {
488 WriteNextResponseByte('Y');
489
490 /* Send block size to the host */
491 WriteNextResponseByte(SPM_PAGESIZE >> 8);
492 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
493 }
494 else if ((Command == 'B') || (Command == 'g'))
495 {
496 /* Delegate the block write/read to a separate function for clarity */
497 ReadWriteMemoryBlock(Command);
498 }
499 #endif
500 #if !defined(NO_FLASH_BYTE_SUPPORT)
501 else if (Command == 'C')
502 {
503 /* Write the high byte to the current flash page */
504 boot_page_fill(CurrAddress, FetchNextCommandByte());
505
506 /* Send confirmation byte back to the host */
507 WriteNextResponseByte('\r');
508 }
509 else if (Command == 'c')
510 {
511 /* Write the low byte to the current flash page */
512 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
513
514 /* Increment the address */
515 CurrAddress += 2;
516
517 /* Send confirmation byte back to the host */
518 WriteNextResponseByte('\r');
519 }
520 else if (Command == 'm')
521 {
522 /* Commit the flash page to memory */
523 boot_page_write(CurrAddress);
524
525 /* Wait until write operation has completed */
526 boot_spm_busy_wait();
527
528 /* Send confirmation byte back to the host */
529 WriteNextResponseByte('\r');
530 }
531 else if (Command == 'R')
532 {
533 #if (FLASHEND > 0xFFFF)
534 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
535 #else
536 uint16_t ProgramWord = pgm_read_word(CurrAddress);
537 #endif
538
539 WriteNextResponseByte(ProgramWord >> 8);
540 WriteNextResponseByte(ProgramWord & 0xFF);
541 }
542 #endif
543 #if !defined(NO_EEPROM_BYTE_SUPPORT)
544 else if (Command == 'D')
545 {
546 /* Read the byte from the endpoint and write it to the EEPROM */
547 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
548
549 /* Increment the address after use */
550 CurrAddress += 2;
551
552 /* Send confirmation byte back to the host */
553 WriteNextResponseByte('\r');
554 }
555 else if (Command == 'd')
556 {
557 /* Read the EEPROM byte and write it to the endpoint */
558 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
559
560 /* Increment the address after use */
561 CurrAddress += 2;
562 }
563 #endif
564 else if (Command != 27)
565 {
566 /* Unknown (non-sync) command, return fail code */
567 WriteNextResponseByte('?');
568 }
569
570 /* Select the IN endpoint */
571 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
572
573 /* Remember if the endpoint is completely full before clearing it */
574 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
575
576 /* Send the endpoint data to the host */
577 Endpoint_ClearIN();
578
579 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
580 if (IsEndpointFull)
581 {
582 while (!(Endpoint_IsINReady()))
583 {
584 if (USB_DeviceState == DEVICE_STATE_Unattached)
585 return;
586 }
587
588 Endpoint_ClearIN();
589 }
590
591 /* Wait until the data has been sent to the host */
592 while (!(Endpoint_IsINReady()))
593 {
594 if (USB_DeviceState == DEVICE_STATE_Unattached)
595 return;
596 }
597
598 /* Select the OUT endpoint */
599 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
600
601 /* Acknowledge the command from the host */
602 Endpoint_ClearOUT();
603 }
604