83fd0ee924045b96c807038b687e4d2f48e670e6
[pub/USBasp.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2010.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Line coding options for the virtual serial port. Although the virtual serial port data is never
40 * sent through a physical serial port, the line encoding data must still be read and preserved from
41 * the host, or the host will detect a problem and fail to open the port. This structure contains the
42 * current encoding options, including baud rate, character format, parity mode and total number of
43 * bits in each data chunk.
44 */
45 CDC_Line_Coding_t LineCoding = { .BaudRateBPS = 9600,
46 .CharFormat = OneStopBit,
47 .ParityType = Parity_None,
48 .DataBits = 8 };
49
50 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
51 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
52 * command.)
53 */
54 uint32_t CurrAddress;
55
56 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
57 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
58 * jumped to via an indirect jump to location 0x0000.
59 */
60 bool RunBootloader = true;
61
62
63 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
64 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
65 * the loaded application code.
66 */
67 int main(void)
68 {
69 /* Setup hardware required for the bootloader */
70 SetupHardware();
71
72 /* Enable global interrupts so that the USB stack can function */
73 sei();
74
75 while (RunBootloader)
76 {
77 CDC_Task();
78 USB_USBTask();
79 }
80
81 /* Reset all configured hardware to their default states for the user app */
82 ResetHardware();
83
84 /* Start the user application */
85 AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
86 AppStartPtr();
87 }
88
89 /** Configures all hardware required for the bootloader. */
90 void SetupHardware(void)
91 {
92 /* Disable watchdog if enabled by bootloader/fuses */
93 MCUSR &= ~(1 << WDRF);
94 wdt_disable();
95
96 /* Disable clock division */
97 clock_prescale_set(clock_div_1);
98
99 /* Relocate the interrupt vector table to the bootloader section */
100 MCUCR = (1 << IVCE);
101 MCUCR = (1 << IVSEL);
102
103 /* Initialize USB Subsystem */
104 USB_Init();
105 }
106
107 /** Resets all configured hardware required for the bootloader back to their original states. */
108 void ResetHardware(void)
109 {
110 /* Shut down the USB subsystem */
111 USB_ShutDown();
112
113 /* Relocate the interrupt vector table back to the application section */
114 MCUCR = (1 << IVCE);
115 MCUCR = 0;
116
117 /* Re-enable RWW section */
118 boot_rww_enable();
119 }
120
121 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
122 * to relay data to and from the attached USB host.
123 */
124 void EVENT_USB_Device_ConfigurationChanged(void)
125 {
126 /* Setup CDC Notification, Rx and Tx Endpoints */
127 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
128 ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
129 ENDPOINT_BANK_SINGLE);
130
131 Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
132 ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
133 ENDPOINT_BANK_SINGLE);
134
135 Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
136 ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
137 ENDPOINT_BANK_SINGLE);
138 }
139
140 /** Event handler for the USB_UnhandledControlRequest event. This is used to catch standard and class specific
141 * control requests that are not handled internally by the USB library, so that they can be handled appropriately
142 * for the application.
143 */
144 void EVENT_USB_Device_UnhandledControlRequest(void)
145 {
146 uint8_t* LineCodingData = (uint8_t*)&LineCoding;
147
148 /* Process CDC specific control requests */
149 switch (USB_ControlRequest.bRequest)
150 {
151 case REQ_GetLineEncoding:
152 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
153 {
154 Endpoint_ClearSETUP();
155
156 for (uint8_t i = 0; i < sizeof(LineCoding); i++)
157 Endpoint_Write_Byte(*(LineCodingData++));
158
159 Endpoint_ClearIN();
160
161 Endpoint_ClearStatusStage();
162 }
163
164 break;
165 case REQ_SetLineEncoding:
166 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
167 {
168 Endpoint_ClearSETUP();
169
170 while (!(Endpoint_IsOUTReceived()))
171 {
172 if (USB_DeviceState == DEVICE_STATE_Unattached)
173 return;
174 }
175
176 for (uint8_t i = 0; i < sizeof(LineCoding); i++)
177 *(LineCodingData++) = Endpoint_Read_Byte();
178
179 Endpoint_ClearOUT();
180
181 Endpoint_ClearStatusStage();
182 }
183
184 break;
185 case REQ_SetControlLineState:
186 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
187 {
188 Endpoint_ClearSETUP();
189
190 Endpoint_ClearStatusStage();
191 }
192
193 break;
194 }
195 }
196
197 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
198 * on the AVR910 protocol command issued.
199 *
200 * \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform
201 */
202 static void ReadWriteMemoryBlock(const uint8_t Command)
203 {
204 uint16_t BlockSize;
205 char MemoryType;
206
207 bool HighByte = false;
208 uint8_t LowByte = 0;
209
210 BlockSize = (FetchNextCommandByte() << 8);
211 BlockSize |= FetchNextCommandByte();
212
213 MemoryType = FetchNextCommandByte();
214
215 if ((MemoryType != 'E') && (MemoryType != 'F'))
216 {
217 /* Send error byte back to the host */
218 WriteNextResponseByte('?');
219
220 return;
221 }
222
223 /* Check if command is to read memory */
224 if (Command == 'g')
225 {
226 /* Re-enable RWW section */
227 boot_rww_enable();
228
229 while (BlockSize--)
230 {
231 if (MemoryType == 'F')
232 {
233 /* Read the next FLASH byte from the current FLASH page */
234 #if (FLASHEND > 0xFFFF)
235 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
236 #else
237 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
238 #endif
239
240 /* If both bytes in current word have been read, increment the address counter */
241 if (HighByte)
242 CurrAddress += 2;
243
244 HighByte = !HighByte;
245 }
246 else
247 {
248 /* Read the next EEPROM byte into the endpoint */
249 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(uint16_t)(CurrAddress >> 1)));
250
251 /* Increment the address counter after use */
252 CurrAddress += 2;
253 }
254 }
255 }
256 else
257 {
258 uint32_t PageStartAddress = CurrAddress;
259
260 if (MemoryType == 'F')
261 {
262 boot_page_erase(PageStartAddress);
263 boot_spm_busy_wait();
264 }
265
266 while (BlockSize--)
267 {
268 if (MemoryType == 'F')
269 {
270 /* If both bytes in current word have been written, increment the address counter */
271 if (HighByte)
272 {
273 /* Write the next FLASH word to the current FLASH page */
274 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
275
276 /* Increment the address counter after use */
277 CurrAddress += 2;
278
279 HighByte = false;
280 }
281 else
282 {
283 LowByte = FetchNextCommandByte();
284
285 HighByte = true;
286 }
287 }
288 else
289 {
290 /* Write the next EEPROM byte from the endpoint */
291 eeprom_write_byte((uint8_t*)(uint16_t)(CurrAddress >> 1), FetchNextCommandByte());
292
293 /* Increment the address counter after use */
294 CurrAddress += 2;
295 }
296 }
297
298 /* If in FLASH programming mode, commit the page after writing */
299 if (MemoryType == 'F')
300 {
301 /* Commit the flash page to memory */
302 boot_page_write(PageStartAddress);
303
304 /* Wait until write operation has completed */
305 boot_spm_busy_wait();
306 }
307
308 /* Send response byte back to the host */
309 WriteNextResponseByte('\r');
310 }
311 }
312
313 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
314 * to allow reception of the next data packet from the host.
315 *
316 * \return Next received byte from the host in the CDC data OUT endpoint
317 */
318 static uint8_t FetchNextCommandByte(void)
319 {
320 /* Select the OUT endpoint so that the next data byte can be read */
321 Endpoint_SelectEndpoint(CDC_RX_EPNUM);
322
323 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
324 while (!(Endpoint_IsReadWriteAllowed()))
325 {
326 Endpoint_ClearOUT();
327
328 while (!(Endpoint_IsOUTReceived()))
329 {
330 if (USB_DeviceState == DEVICE_STATE_Unattached)
331 return 0;
332 }
333 }
334
335 /* Fetch the next byte from the OUT endpoint */
336 return Endpoint_Read_Byte();
337 }
338
339 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
340 * bank when full ready for the next byte in the packet to the host.
341 *
342 * \param[in] Response Next response byte to send to the host
343 */
344 static void WriteNextResponseByte(const uint8_t Response)
345 {
346 /* Select the IN endpoint so that the next data byte can be written */
347 Endpoint_SelectEndpoint(CDC_TX_EPNUM);
348
349 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
350 if (!(Endpoint_IsReadWriteAllowed()))
351 {
352 Endpoint_ClearIN();
353
354 while (!(Endpoint_IsINReady()))
355 {
356 if (USB_DeviceState == DEVICE_STATE_Unattached)
357 return;
358 }
359 }
360
361 /* Write the next byte to the OUT endpoint */
362 Endpoint_Write_Byte(Response);
363 }
364
365 /** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
366 * and send the appropriate response back to the host.
367 */
368 void CDC_Task(void)
369 {
370 /* Select the OUT endpoint */
371 Endpoint_SelectEndpoint(CDC_RX_EPNUM);
372
373 /* Check if endpoint has a command in it sent from the host */
374 if (Endpoint_IsOUTReceived())
375 {
376 /* Read in the bootloader command (first byte sent from host) */
377 uint8_t Command = FetchNextCommandByte();
378
379 if ((Command == 'L') || (Command == 'P') || (Command == 'T') || (Command == 'E'))
380 {
381 if (Command == 'E')
382 RunBootloader = false;
383 if (Command == 'T')
384 FetchNextCommandByte();
385
386 /* Send confirmation byte back to the host */
387 WriteNextResponseByte('\r');
388 }
389 else if (Command == 't')
390 {
391 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
392 WriteNextResponseByte(0x44);
393
394 WriteNextResponseByte(0x00);
395 }
396 else if (Command == 'a')
397 {
398 /* Indicate auto-address increment is supported */
399 WriteNextResponseByte('Y');
400 }
401 else if (Command == 'A')
402 {
403 /* Set the current address to that given by the host */
404 CurrAddress = (FetchNextCommandByte() << 9);
405 CurrAddress |= (FetchNextCommandByte() << 1);
406
407 /* Send confirmation byte back to the host */
408 WriteNextResponseByte('\r');
409 }
410 else if (Command == 'p')
411 {
412 /* Indicate serial programmer back to the host */
413 WriteNextResponseByte('S');
414 }
415 else if (Command == 'S')
416 {
417 /* Write the 7-byte software identifier to the endpoint */
418 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
419 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
420 }
421 else if (Command == 'V')
422 {
423 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
424 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
425 }
426 else if (Command == 's')
427 {
428 WriteNextResponseByte(AVR_SIGNATURE_3);
429 WriteNextResponseByte(AVR_SIGNATURE_2);
430 WriteNextResponseByte(AVR_SIGNATURE_1);
431 }
432 else if (Command == 'b')
433 {
434 WriteNextResponseByte('Y');
435
436 /* Send block size to the host */
437 WriteNextResponseByte(SPM_PAGESIZE >> 8);
438 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
439 }
440 else if (Command == 'e')
441 {
442 /* Clear the application section of flash */
443 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress++)
444 {
445 boot_page_erase(CurrFlashAddress);
446 boot_spm_busy_wait();
447 boot_page_write(CurrFlashAddress);
448 boot_spm_busy_wait();
449
450 CurrFlashAddress += SPM_PAGESIZE;
451 }
452
453 /* Send confirmation byte back to the host */
454 WriteNextResponseByte('\r');
455 }
456 else if (Command == 'l')
457 {
458 /* Set the lock bits to those given by the host */
459 boot_lock_bits_set(FetchNextCommandByte());
460
461 /* Send confirmation byte back to the host */
462 WriteNextResponseByte('\r');
463 }
464 else if (Command == 'r')
465 {
466 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
467 }
468 else if (Command == 'F')
469 {
470 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
471 }
472 else if (Command == 'N')
473 {
474 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
475 }
476 else if (Command == 'Q')
477 {
478 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
479 }
480 else if (Command == 'C')
481 {
482 /* Write the high byte to the current flash page */
483 boot_page_fill(CurrAddress, FetchNextCommandByte());
484
485 /* Send confirmation byte back to the host */
486 WriteNextResponseByte('\r');
487 }
488 else if (Command == 'c')
489 {
490 /* Write the low byte to the current flash page */
491 boot_page_fill(CurrAddress | 1, FetchNextCommandByte());
492
493 /* Increment the address */
494 CurrAddress += 2;
495
496 /* Send confirmation byte back to the host */
497 WriteNextResponseByte('\r');
498 }
499 else if (Command == 'm')
500 {
501 /* Commit the flash page to memory */
502 boot_page_write(CurrAddress);
503
504 /* Wait until write operation has completed */
505 boot_spm_busy_wait();
506
507 /* Send confirmation byte back to the host */
508 WriteNextResponseByte('\r');
509 }
510 else if ((Command == 'B') || (Command == 'g'))
511 {
512 /* Delegate the block write/read to a separate function for clarity */
513 ReadWriteMemoryBlock(Command);
514 }
515 else if (Command == 'R')
516 {
517 #if (FLASHEND > 0xFFFF)
518 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
519 #else
520 uint16_t ProgramWord = pgm_read_word(CurrAddress);
521 #endif
522
523 WriteNextResponseByte(ProgramWord >> 8);
524 WriteNextResponseByte(ProgramWord & 0xFF);
525 }
526 else if (Command == 'D')
527 {
528 /* Read the byte from the endpoint and write it to the EEPROM */
529 eeprom_write_byte((uint8_t*)((uint16_t)(CurrAddress >> 1)), FetchNextCommandByte());
530
531 /* Increment the address after use */
532 CurrAddress += 2;
533
534 /* Send confirmation byte back to the host */
535 WriteNextResponseByte('\r');
536 }
537 else if (Command == 'd')
538 {
539 /* Read the EEPROM byte and write it to the endpoint */
540 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((uint16_t)(CurrAddress >> 1))));
541
542 /* Increment the address after use */
543 CurrAddress += 2;
544 }
545 else if (Command == 27)
546 {
547 /* Escape is sync, ignore */
548 }
549 else
550 {
551 /* Unknown command, return fail code */
552 WriteNextResponseByte('?');
553 }
554
555 /* Select the IN endpoint */
556 Endpoint_SelectEndpoint(CDC_TX_EPNUM);
557
558 /* Remember if the endpoint is completely full before clearing it */
559 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
560
561 /* Send the endpoint data to the host */
562 Endpoint_ClearIN();
563
564 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
565 if (IsEndpointFull)
566 {
567 while (!(Endpoint_IsINReady()))
568 {
569 if (USB_DeviceState == DEVICE_STATE_Unattached)
570 return;
571 }
572
573 Endpoint_ClearIN();
574 }
575
576 /* Wait until the data has been sent to the host */
577 while (!(Endpoint_IsINReady()))
578 {
579 if (USB_DeviceState == DEVICE_STATE_Unattached)
580 return;
581 }
582
583 /* Select the OUT endpoint */
584 Endpoint_SelectEndpoint(CDC_RX_EPNUM);
585
586 /* Acknowledge the command from the host */
587 Endpoint_ClearOUT();
588 }
589 }