716a23a1f40310c0005f955b914e578311a64dbc
[pub/USBasp.git] / Bootloaders / Printer / BootloaderPrinter.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2014.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the Printer class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #include "BootloaderPrinter.h"
37
38 /** LUFA Printer Class driver interface configuration and state information. This structure is
39 * passed to all Printer Class driver functions, so that multiple instances of the same class
40 * within a device can be differentiated from one another.
41 */
42 USB_ClassInfo_PRNT_Device_t TextOnly_Printer_Interface =
43 {
44 .Config =
45 {
46 .InterfaceNumber = INTERFACE_ID_Printer,
47 .DataINEndpoint =
48 {
49 .Address = PRINTER_IN_EPADDR,
50 .Size = PRINTER_IO_EPSIZE,
51 .Banks = 1,
52 },
53 .DataOUTEndpoint =
54 {
55 .Address = PRINTER_OUT_EPADDR,
56 .Size = PRINTER_IO_EPSIZE,
57 .Banks = 1,
58 },
59 .IEEE1284String =
60 "MFG:Generic;"
61 "MDL:Generic_/_Text_Only;"
62 "CMD:1284.4;"
63 "CLS:PRINTER",
64 },
65 };
66
67 /** Intel HEX parser state machine state information, to track the contents of
68 * a HEX file streamed in as a sequence of arbitrary bytes.
69 */
70 struct
71 {
72 /** Current HEX parser state machine state. */
73 uint8_t ParserState;
74 /** Previously decoded numerical byte of data. */
75 uint8_t PrevData;
76 /** Currently decoded numerical byte of data. */
77 uint8_t Data;
78 /** Indicates if both bytes that correspond to a single decoded numerical
79 * byte of data (HEX encodes values in ASCII HEX, two characters per byte)
80 * have been read.
81 */
82 bool ReadMSB;
83 /** Intel HEX record type of the current Intel HEX record. */
84 uint8_t RecordType;
85 /** Numerical bytes of data remaining to be read in the current record. */
86 uint8_t DataRem;
87 /** Checksum of the current record received so far. */
88 uint8_t Checksum;
89 /** Starting address of the last addressed FLASH page. */
90 uint32_t PageStartAddress;
91 /** Current 32-bit byte extended base address in FLASH being targeted. */
92 uint32_t CurrBaseAddress;
93 /** Current 32-bit byte address in FLASH being targeted. */
94 uint32_t CurrAddress;
95 } HEXParser;
96
97 /** Indicates if there is data waiting to be written to a physical page of
98 * memory in FLASH.
99 */
100 static bool PageDirty = false;
101
102 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
103 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
104 * started via a forced watchdog reset.
105 */
106 static bool RunBootloader = true;
107
108 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
109 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
110 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
111 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
112 */
113 uint16_t MagicBootKey ATTR_NO_INIT;
114
115
116 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
117 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
118 * this will force the user application to start via a software jump.
119 */
120 void Application_Jump_Check(void)
121 {
122 bool JumpToApplication = false;
123
124 #if (BOARD == BOARD_LEONARDO)
125 /* Enable pull-up on the IO13 pin so we can use it to select the mode */
126 PORTC |= (1 << 7);
127 Delay_MS(10);
128
129 /* If IO13 is not jumpered to ground, start the user application instead */
130 JumpToApplication |= ((PINC & (1 << 7)) != 0);
131
132 /* Disable pull-up after the check has completed */
133 PORTC &= ~(1 << 7);
134 #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
135 /* Disable JTAG debugging */
136 JTAG_DISABLE();
137
138 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
139 PORTF |= (1 << 4);
140 Delay_MS(10);
141
142 /* If the TCK pin is not jumpered to ground, start the user application instead */
143 JumpToApplication |= ((PINF & (1 << 4)) != 0);
144
145 /* Re-enable JTAG debugging */
146 JTAG_ENABLE();
147 #endif
148
149 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
150 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
151 JumpToApplication |= true;
152
153 /* Don't run the user application if the reset vector is blank (no app loaded) */
154 if (pgm_read_word_near(0) == 0xFFFF)
155 JumpToApplication = false;
156
157 /* If a request has been made to jump to the user application, honor it */
158 if (JumpToApplication)
159 {
160 /* Turn off the watchdog */
161 MCUSR &= ~(1<<WDRF);
162 wdt_disable();
163
164 /* Clear the boot key and jump to the user application */
165 MagicBootKey = 0;
166
167 // cppcheck-suppress constStatement
168 ((void (*)(void))0x0000)();
169 }
170 }
171
172 /**
173 * Converts a given input byte of data from an ASCII encoded HEX value to an integer value.
174 *
175 * \note Input HEX bytes are expected to be in uppercase only.
176 *
177 * \param[in] Byte ASCII byte of data to convert
178 *
179 * \return Integer converted value of the input ASCII encoded HEX byte of data, or -1 if the
180 * input is not valid ASCII encoded HEX.
181 */
182 static int8_t HexToDecimal(const char Byte)
183 {
184 if ((Byte >= 'A') && (Byte <= 'F'))
185 return (10 + (Byte - 'A'));
186 else if ((Byte >= '0') && (Byte <= '9'))
187 return (Byte - '0');
188
189 return -1;
190 }
191
192 /**
193 * Flushes a partially written page of data to physical FLASH, if a page
194 * boundary has been crossed.
195 *
196 * \note If a page flush occurs the global HEX parser state is updated.
197 */
198 static void FlushPageIfRequired(void)
199 {
200 /* Abort if no data has been buffered for writing to the current page */
201 if (!PageDirty)
202 return;
203
204 /* Flush the FLASH page to physical memory if we are crossing a page boundary */
205 uint32_t NewPageStartAddress = (HEXParser.CurrAddress & ~(SPM_PAGESIZE - 1));
206 if (HEXParser.PageStartAddress != NewPageStartAddress)
207 {
208 boot_page_write(HEXParser.PageStartAddress);
209 boot_spm_busy_wait();
210
211 HEXParser.PageStartAddress = NewPageStartAddress;
212
213 PageDirty = false;
214 }
215 }
216
217 /**
218 * Parses an input Intel HEX formatted stream one character at a time, loading
219 * the data contents into the device's internal FLASH memory.
220 *
221 * \param[in] ReadCharacter Next input ASCII byte of data to parse
222 */
223 static void ParseIntelHEXByte(const char ReadCharacter)
224 {
225 /* Reset the line parser while waiting for a new line to start */
226 if ((HEXParser.ParserState == HEX_PARSE_STATE_WAIT_LINE) || (ReadCharacter == ':'))
227 {
228 HEXParser.Checksum = 0;
229 HEXParser.CurrAddress = HEXParser.CurrBaseAddress;
230 HEXParser.ReadMSB = false;
231
232 /* ASCII ':' indicates the start of a new HEX record */
233 if (ReadCharacter == ':')
234 HEXParser.ParserState = HEX_PARSE_STATE_BYTE_COUNT;
235
236 return;
237 }
238
239 /* Only allow ASCII HEX encoded digits, ignore all other characters */
240 int8_t ReadCharacterDec = HexToDecimal(ReadCharacter);
241 if (ReadCharacterDec < 0)
242 return;
243
244 /* Read and convert the next nibble of data from the current character */
245 HEXParser.Data = (HEXParser.Data << 4) | ReadCharacterDec;
246 HEXParser.ReadMSB = !HEXParser.ReadMSB;
247
248 /* Only process further when a full byte (two nibbles) have been read */
249 if (HEXParser.ReadMSB)
250 return;
251
252 /* Intel HEX checksum is for all fields except starting character and the
253 * checksum itself
254 */
255 if (HEXParser.ParserState != HEX_PARSE_STATE_CHECKSUM)
256 HEXParser.Checksum += HEXParser.Data;
257
258 switch (HEXParser.ParserState)
259 {
260 case HEX_PARSE_STATE_BYTE_COUNT:
261 HEXParser.DataRem = HEXParser.Data;
262 HEXParser.ParserState = HEX_PARSE_STATE_ADDRESS_HIGH;
263 break;
264
265 case HEX_PARSE_STATE_ADDRESS_HIGH:
266 HEXParser.CurrAddress += ((uint16_t)HEXParser.Data << 8);
267 HEXParser.ParserState = HEX_PARSE_STATE_ADDRESS_LOW;
268 break;
269
270 case HEX_PARSE_STATE_ADDRESS_LOW:
271 HEXParser.CurrAddress += HEXParser.Data;
272 HEXParser.ParserState = HEX_PARSE_STATE_RECORD_TYPE;
273 break;
274
275 case HEX_PARSE_STATE_RECORD_TYPE:
276 HEXParser.RecordType = HEXParser.Data;
277 HEXParser.ParserState = (HEXParser.DataRem ? HEX_PARSE_STATE_READ_DATA : HEX_PARSE_STATE_CHECKSUM);
278 break;
279
280 case HEX_PARSE_STATE_READ_DATA:
281 /* Track the number of read data bytes in the record */
282 HEXParser.DataRem--;
283
284 /* Protect the bootloader against being written to */
285 if (HEXParser.CurrAddress >= BOOT_START_ADDR)
286 {
287 HEXParser.ParserState = HEX_PARSE_STATE_WAIT_LINE;
288 PageDirty = false;
289 return;
290 }
291
292 /* Wait for a machine word (two bytes) of data to be read */
293 if (HEXParser.DataRem & 0x01)
294 {
295 HEXParser.PrevData = HEXParser.Data;
296 break;
297 }
298
299 /* Convert the last two received data bytes into a 16-bit word */
300 uint16_t NewDataWord = ((uint16_t)HEXParser.Data << 8) | HEXParser.PrevData;
301
302 switch (HEXParser.RecordType)
303 {
304 case HEX_RECORD_TYPE_Data:
305 /* If we are writing to a new page, we need to erase it first */
306 if (!(PageDirty))
307 {
308 boot_page_erase(HEXParser.PageStartAddress);
309 boot_spm_busy_wait();
310
311 PageDirty = true;
312 }
313
314 /* Fill the FLASH memory buffer with the new word of data */
315 boot_page_fill(HEXParser.CurrAddress, NewDataWord);
316 HEXParser.CurrAddress += 2;
317
318 /* Flush the FLASH page to physical memory if we are crossing a page boundary */
319 FlushPageIfRequired();
320 break;
321
322 case HEX_RECORD_TYPE_ExtendedSegmentAddress:
323 /* Extended address data - store the upper 12-bits of the new address */
324 HEXParser.CurrBaseAddress = ((uint32_t)NewDataWord << 4);
325 break;
326
327 case HEX_RECORD_TYPE_ExtendedLinearAddress:
328 /* Extended address data - store the upper 16-bits of the new address */
329 HEXParser.CurrBaseAddress = ((uint32_t)NewDataWord << 16);
330 break;
331 }
332
333 if (!HEXParser.DataRem)
334 HEXParser.ParserState = HEX_PARSE_STATE_CHECKSUM;
335 break;
336
337 case HEX_PARSE_STATE_CHECKSUM:
338 /* Verify checksum of the completed record */
339 if (HEXParser.Data != ((~HEXParser.Checksum + 1) & 0xFF))
340 break;
341
342 /* Flush the FLASH page to physical memory if we are crossing a page boundary */
343 FlushPageIfRequired();
344
345 /* If end of the HEX file reached, the bootloader should exit at next opportunity */
346 if (HEXParser.RecordType == HEX_RECORD_TYPE_EndOfFile)
347 RunBootloader = false;
348
349 break;
350
351 default:
352 HEXParser.ParserState = HEX_PARSE_STATE_WAIT_LINE;
353 break;
354 }
355 }
356
357 /** Main program entry point. This routine configures the hardware required by the application, then
358 * enters a loop to run the application tasks in sequence.
359 */
360 int main(void)
361 {
362 SetupHardware();
363
364 LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
365 GlobalInterruptEnable();
366
367 while (RunBootloader)
368 {
369 uint8_t BytesReceived = PRNT_Device_BytesReceived(&TextOnly_Printer_Interface);
370
371 if (BytesReceived)
372 {
373 LEDs_SetAllLEDs(LEDMASK_USB_BUSY);
374
375 while (BytesReceived--)
376 {
377 int16_t ReceivedByte = PRNT_Device_ReceiveByte(&TextOnly_Printer_Interface);
378
379 /* Feed the next byte of data to the HEX parser */
380 ParseIntelHEXByte(ReceivedByte);
381 }
382
383 LEDs_SetAllLEDs(LEDMASK_USB_READY);
384 }
385
386 PRNT_Device_USBTask(&TextOnly_Printer_Interface);
387 USB_USBTask();
388 }
389
390 /* Disconnect from the host - USB interface will be reset later along with the AVR */
391 USB_Detach();
392
393 /* Unlock the forced application start mode of the bootloader if it is restarted */
394 MagicBootKey = MAGIC_BOOT_KEY;
395
396 /* Enable the watchdog and force a timeout to reset the AVR */
397 wdt_enable(WDTO_250MS);
398
399 for (;;);
400 }
401
402 /** Configures the board hardware and chip peripherals for the demo's functionality. */
403 static void SetupHardware(void)
404 {
405 /* Disable watchdog if enabled by bootloader/fuses */
406 MCUSR &= ~(1 << WDRF);
407 wdt_disable();
408
409 /* Disable clock division */
410 clock_prescale_set(clock_div_1);
411
412 /* Relocate the interrupt vector table to the bootloader section */
413 MCUCR = (1 << IVCE);
414 MCUCR = (1 << IVSEL);
415
416 /* Hardware Initialization */
417 LEDs_Init();
418 USB_Init();
419
420 /* Bootloader active LED toggle timer initialization */
421 TIMSK1 = (1 << TOIE1);
422 TCCR1B = ((1 << CS11) | (1 << CS10));
423 }
424
425 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
426 ISR(TIMER1_OVF_vect, ISR_BLOCK)
427 {
428 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
429 }
430
431 /** Event handler for the USB_Connect event. This indicates that the device is enumerating via the status LEDs. */
432 void EVENT_USB_Device_Connect(void)
433 {
434 /* Indicate USB enumerating */
435 LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING);
436 }
437
438 /** Event handler for the USB_Disconnect event. This indicates that the device is no longer connected to a host via
439 * the status LEDs and stops the Printer management task.
440 */
441 void EVENT_USB_Device_Disconnect(void)
442 {
443 /* Indicate USB not ready */
444 LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
445 }
446
447 /** Event handler for the USB_ConfigurationChanged event. This is fired when the host set the current configuration
448 * of the USB device after enumeration - the device endpoints are configured and the Mass Storage management task started.
449 */
450 void EVENT_USB_Device_ConfigurationChanged(void)
451 {
452 bool ConfigSuccess = true;
453
454 /* Setup Printer Data Endpoints */
455 ConfigSuccess &= PRNT_Device_ConfigureEndpoints(&TextOnly_Printer_Interface);
456
457 /* Reset the HEX parser upon successful connection to a host */
458 HEXParser.ParserState = HEX_PARSE_STATE_WAIT_LINE;
459
460 /* Indicate endpoint configuration success or failure */
461 LEDs_SetAllLEDs(ConfigSuccess ? LEDMASK_USB_READY : LEDMASK_USB_ERROR);
462 }
463
464 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
465 * the device from the USB host before passing along unhandled control requests to the library for processing
466 * internally.
467 */
468 void EVENT_USB_Device_ControlRequest(void)
469 {
470 PRNT_Device_ProcessControlRequest(&TextOnly_Printer_Interface);
471 }