4efa27ecbc2e3b873583b0c4e044d63b67d2bd8d
[pub/USBasp.git] / LUFA / Common / Common.h
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2011.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 * \brief Common library convenience headers, macros and functions.
33 *
34 * \copydetails Group_Common
35 */
36
37 /** \defgroup Group_Common Common Utility Headers - LUFA/Drivers/Common/Common.h
38 * \brief Common library convenience headers, macros and functions.
39 *
40 * Common utility headers containing macros, functions, enums and types which are common to all
41 * aspects of the library.
42 *
43 * @{
44 */
45
46 /** \defgroup Group_Debugging Debugging Macros
47 * \brief Convenience macros to aid in debugging applications.
48 *
49 * Macros to aid debugging of a user application.
50 */
51
52 /** \defgroup Group_BitManip Endian and Bit Macros
53 * \brief Convenience macros to aid in bit manipulations and endianness transforms.
54 *
55 * Functions for swapping endianness and reversing bit orders of data.
56 */
57
58 #ifndef __LUFA_COMMON_H__
59 #define __LUFA_COMMON_H__
60
61 /* Macros: */
62 #if !defined(__DOXYGEN__)
63 #define __INCLUDE_FROM_COMMON_H
64 #endif
65
66 /* Includes: */
67 #include <stdint.h>
68 #include <stdbool.h>
69 #include <string.h>
70 #include <stddef.h>
71
72 #include "Architectures.h"
73 #include "Attributes.h"
74 #include "BoardTypes.h"
75
76 /* Architecture specific utility includes: */
77 #if (ARCH == ARCH_AVR8)
78 #include <avr/io.h>
79 #include <avr/interrupt.h>
80 #include <avr/pgmspace.h>
81 #include <avr/eeprom.h>
82 #include <avr/boot.h>
83 #include <util/atomic.h>
84 #include <util/delay.h>
85
86 typedef uint8_t uintN_t;
87 typedef int8_t intN_t;
88 #elif (ARCH == ARCH_UC3B)
89 #include <avr32/io.h>
90
91 typedef uint32_t uintN_t;
92 typedef int32_t intN_t;
93
94 #warning The UC3B architecture support is currently experimental and incomplete!
95 #endif
96
97 /* Public Interface - May be used in end-application: */
98 /* Macros: */
99 /** Macro for encasing other multi-statement macros. This should be used along with an opening brace
100 * before the start of any multi-statement macro, so that the macros contents as a whole are treated
101 * as a discrete block and not as a list of separate statements which may cause problems when used as
102 * a block (such as inline \c if statements).
103 */
104 #define MACROS do
105
106 /** Macro for encasing other multi-statement macros. This should be used along with a preceding closing
107 * brace at the end of any multi-statement macro, so that the macros contents as a whole are treated
108 * as a discrete block and not as a list of separate statements which may cause problems when used as
109 * a block (such as inline \c if statements).
110 */
111 #define MACROE while (0)
112
113 /** Convenience macro to determine the larger of two values.
114 *
115 * \note This macro should only be used with operands that do not have side effects from being evaluated
116 * multiple times.
117 *
118 * \param[in] x First value to compare
119 * \param[in] y First value to compare
120 *
121 * \return The larger of the two input parameters
122 */
123 #if !defined(MAX) || defined(__DOXYGEN__)
124 #define MAX(x, y) ((x > y) ? x : y)
125 #endif
126
127 /** Convenience macro to determine the smaller of two values.
128 *
129 * \note This macro should only be used with operands that do not have side effects from being evaluated
130 * multiple times.
131 *
132 * \param[in] x First value to compare
133 * \param[in] y First value to compare
134 *
135 * \return The smaller of the two input parameters
136 */
137 #if !defined(MIN) || defined(__DOXYGEN__)
138 #define MIN(x, y) ((x < y) ? x : y)
139 #endif
140
141 #if (ARCH == ARCH_AVR8) || defined(__DOXYGEN__)
142 /** Defines a volatile \c NOP statement which cannot be optimized out by the compiler, and thus can always
143 * be set as a breakpoint in the resulting code. Useful for debugging purposes, where the optimiser
144 * removes/reorders code to the point where break points cannot reliably be set.
145 *
146 * \ingroup Group_Debugging
147 */
148 #define JTAG_DEBUG_POINT() __asm__ __volatile__ ("NOP" ::)
149
150 /** Defines an explicit JTAG break point in the resulting binary via the assembly \c BREAK statement. When
151 * a JTAG is used, this causes the program execution to halt when reached until manually resumed.
152 *
153 * \ingroup Group_Debugging
154 */
155 #define JTAG_DEBUG_BREAK() __asm__ __volatile__ ("BREAK" ::)
156
157 #if !defined(pgm_read_ptr) || defined(__DOXYGEN__)
158 /** Reads a pointer out of PROGMEM space on the AVR8 architecture. This is currently a wrapper for the
159 * avr-libc \c pgm_read_ptr() macro with a \c void* cast, so that its value can be assigned directly
160 * to a pointer variable or used in pointer arithmetic without further casting in C. In a future
161 * avr-libc distribution this will be part of the standard API and will be implemented in a more formal
162 * manner.
163 *
164 * \param[in] Addr Address of the pointer to read.
165 *
166 * \return Pointer retrieved from PROGMEM space.
167 */
168 #define pgm_read_ptr(Addr) (void*)pgm_read_word(Addr)
169 #endif
170
171 /** Macro for testing condition "x" and breaking via \ref JTAG_DEBUG_BREAK() if the condition is false.
172 *
173 * \param[in] Condition Condition that will be evaluated,
174 *
175 * \ingroup Group_Debugging
176 */
177 #define JTAG_DEBUG_ASSERT(Condition) MACROS{ if (!(Condition)) { JTAG_DEBUG_BREAK(); } }MACROE
178
179 /** Macro for testing condition "x" and writing debug data to the stdout stream if \c false. The stdout stream
180 * must be pre-initialized before this macro is run and linked to an output device, such as the microcontroller's
181 * USART peripheral.
182 *
183 * The output takes the form "{FILENAME}: Function {FUNCTION NAME}, Line {LINE NUMBER}: Assertion {Condition} failed."
184 *
185 * \param[in] Condition Condition that will be evaluated,
186 *
187 * \ingroup Group_Debugging
188 */
189 #define STDOUT_ASSERT(Condition) MACROS{ if (!(x)) { printf_P(PSTR("%s: Function \"%s\", Line %d: " \
190 "Assertion \"%s\" failed.\r\n"), \
191 __FILE__, __func__, __LINE__, #Condition); } }MACROE
192 #endif
193
194 /** Forces GCC to use pointer indirection (via the device's pointer register pairs) when accessing the given
195 * struct pointer. In some cases GCC will emit non-optimal assembly code when accessing a structure through
196 * a pointer, resulting in a larger binary. When this macro is used on a (non \c const) structure pointer before
197 * use, it will force GCC to use pointer indirection on the elements rather than direct store and load
198 * instructions.
199 *
200 * \param[in, out] StructPtr Pointer to a structure which is to be forced into indirect access mode.
201 */
202 #define GCC_FORCE_POINTER_ACCESS(StructPtr) __asm__ __volatile__("" : "=b" (StructPtr) : "0" (StructPtr))
203
204 /** Swaps the byte ordering of a 16-bit value at compile time. Do not use this macro for swapping byte orderings
205 * of dynamic values computed at runtime, use \ref SwapEndian_16() instead. The result of this macro can be used
206 * inside struct or other variable initializers outside of a function, something that is not possible with the
207 * inline function variant.
208 *
209 * \param[in] x 16-bit value whose byte ordering is to be swapped.
210 *
211 * \return Input value with the byte ordering reversed.
212 */
213 #define SWAPENDIAN_16(x) ((((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8))
214
215 /** Swaps the byte ordering of a 32-bit value at compile time. Do not use this macro for swapping byte orderings
216 * of dynamic values computed at runtime- use \ref SwapEndian_32() instead. The result of this macro can be used
217 * inside struct or other variable initializers outside of a function, something that is not possible with the
218 * inline function variant.
219 *
220 * \param[in] x 32-bit value whose byte ordering is to be swapped.
221 *
222 * \return Input value with the byte ordering reversed.
223 */
224 #define SWAPENDIAN_32(x) ((((x) & 0xFF000000UL) >> 24UL) | (((x) & 0x00FF0000UL) >> 8UL) | \
225 (((x) & 0x0000FF00UL) << 8UL) | (((x) & 0x000000FFUL) << 24UL))
226
227 /* Inline Functions: */
228 /** Function to reverse the individual bits in a byte - i.e. bit 7 is moved to bit 0, bit 6 to bit 1,
229 * etc.
230 *
231 * \ingroup Group_BitManip
232 *
233 * \param[in] Byte Byte of data whose bits are to be reversed.
234 */
235 static inline uint8_t BitReverse(uint8_t Byte) ATTR_WARN_UNUSED_RESULT ATTR_CONST;
236 static inline uint8_t BitReverse(uint8_t Byte)
237 {
238 Byte = (((Byte & 0xF0) >> 4) | ((Byte & 0x0F) << 4));
239 Byte = (((Byte & 0xCC) >> 2) | ((Byte & 0x33) << 2));
240 Byte = (((Byte & 0xAA) >> 1) | ((Byte & 0x55) << 1));
241
242 return Byte;
243 }
244
245 /** Function to reverse the byte ordering of the individual bytes in a 16 bit number.
246 *
247 * \ingroup Group_BitManip
248 *
249 * \param[in] Word Word of data whose bytes are to be swapped.
250 */
251 static inline uint16_t SwapEndian_16(const uint16_t Word) ATTR_WARN_UNUSED_RESULT ATTR_CONST;
252 static inline uint16_t SwapEndian_16(const uint16_t Word)
253 {
254 uint8_t Temp;
255
256 union
257 {
258 uint16_t Word;
259 uint8_t Bytes[2];
260 } Data;
261
262 Data.Word = Word;
263
264 Temp = Data.Bytes[0];
265 Data.Bytes[0] = Data.Bytes[1];
266 Data.Bytes[1] = Temp;
267
268 return Data.Word;
269 }
270
271 /** Function to reverse the byte ordering of the individual bytes in a 32 bit number.
272 *
273 * \ingroup Group_BitManip
274 *
275 * \param[in] DWord Double word of data whose bytes are to be swapped.
276 */
277 static inline uint32_t SwapEndian_32(const uint32_t DWord) ATTR_WARN_UNUSED_RESULT ATTR_CONST;
278 static inline uint32_t SwapEndian_32(const uint32_t DWord)
279 {
280 uint8_t Temp;
281
282 union
283 {
284 uint32_t DWord;
285 uint8_t Bytes[4];
286 } Data;
287
288 Data.DWord = DWord;
289
290 Temp = Data.Bytes[0];
291 Data.Bytes[0] = Data.Bytes[3];
292 Data.Bytes[3] = Temp;
293
294 Temp = Data.Bytes[1];
295 Data.Bytes[1] = Data.Bytes[2];
296 Data.Bytes[2] = Temp;
297
298 return Data.DWord;
299 }
300
301 /** Function to reverse the byte ordering of the individual bytes in a n byte number.
302 *
303 * \ingroup Group_BitManip
304 *
305 * \param[in,out] Data Pointer to a number containing an even number of bytes to be reversed.
306 * \param[in] Bytes Length of the data in bytes.
307 */
308 static inline void SwapEndian_n(void* Data,
309 uint8_t Bytes) ATTR_NON_NULL_PTR_ARG(1);
310 static inline void SwapEndian_n(void* Data,
311 uint8_t Bytes)
312 {
313 uint8_t* CurrDataPos = (uint8_t*)Data;
314
315 while (Bytes > 1)
316 {
317 uint8_t Temp = *CurrDataPos;
318 *CurrDataPos = *(CurrDataPos + Bytes - 1);
319 *(CurrDataPos + Bytes - 1) = Temp;
320
321 CurrDataPos++;
322 Bytes -= 2;
323 }
324 }
325
326 #endif
327
328 /** @} */
329