3ce2a62858293d35e7661f973b7b82f6247305ea
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2012.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed in a bootloader session.
42 */
43 static bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 static bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 static bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 static uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 static uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 static DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 static uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 static uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 static uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 static uint16_t EndAddr = 0x0000;
94
95
96 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
97 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
98 * the loaded application code.
99 */
100 int main(void)
101 {
102 /* Configure hardware required by the bootloader */
103 SetupHardware();
104
105 #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
106 /* Disable JTAG debugging */
107 MCUCR |= (1 << JTD);
108 MCUCR |= (1 << JTD);
109
110 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
111 PORTF |= (1 << 4);
112 Delay_MS(10);
113
114 /* If the TCK pin is not jumpered to ground, start the user application instead */
115 RunBootloader = (!(PINF & (1 << 4)));
116
117 /* Re-enable JTAG debugging */
118 MCUCR &= ~(1 << JTD);
119 MCUCR &= ~(1 << JTD);
120 #endif
121
122 /* Turn on first LED on the board to indicate that the bootloader has started */
123 LEDs_SetAllLEDs(LEDS_LED1);
124
125 /* Enable global interrupts so that the USB stack can function */
126 sei();
127
128 /* Run the USB management task while the bootloader is supposed to be running */
129 while (RunBootloader || WaitForExit)
130 USB_USBTask();
131
132 /* Reset configured hardware back to their original states for the user application */
133 ResetHardware();
134
135 /* Start the user application */
136 AppStartPtr();
137 }
138
139 /** Configures all hardware required for the bootloader. */
140 static void SetupHardware(void)
141 {
142 /* Disable watchdog if enabled by bootloader/fuses */
143 MCUSR &= ~(1 << WDRF);
144 wdt_disable();
145
146 /* Disable clock division */
147 clock_prescale_set(clock_div_1);
148
149 /* Relocate the interrupt vector table to the bootloader section */
150 MCUCR = (1 << IVCE);
151 MCUCR = (1 << IVSEL);
152
153 /* Initialize the USB and other board hardware drivers */
154 USB_Init();
155 LEDs_Init();
156
157 /* Bootloader active LED toggle timer initialization */
158 TIMSK1 = (1 << TOIE1);
159 TCCR1B = ((1 << CS11) | (1 << CS10));
160 }
161
162 /** Resets all configured hardware required for the bootloader back to their original states. */
163 static void ResetHardware(void)
164 {
165 /* Shut down the USB and other board hardware drivers */
166 USB_Disable();
167 LEDs_Disable();
168
169 /* Relocate the interrupt vector table back to the application section */
170 MCUCR = (1 << IVCE);
171 MCUCR = 0;
172 }
173
174 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
175 ISR(TIMER1_OVF_vect, ISR_BLOCK)
176 {
177 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
178 }
179
180 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
181 * the device from the USB host before passing along unhandled control requests to the library for processing
182 * internally.
183 */
184 void EVENT_USB_Device_ControlRequest(void)
185 {
186 /* Ignore any requests that aren't directed to the DFU interface */
187 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
188 (REQTYPE_CLASS | REQREC_INTERFACE))
189 {
190 return;
191 }
192
193 /* Activity - toggle indicator LEDs */
194 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
195
196 /* Get the size of the command and data from the wLength value */
197 SentCommand.DataSize = USB_ControlRequest.wLength;
198
199 switch (USB_ControlRequest.bRequest)
200 {
201 case DFU_REQ_DNLOAD:
202 Endpoint_ClearSETUP();
203
204 /* Check if bootloader is waiting to terminate */
205 if (WaitForExit)
206 {
207 /* Bootloader is terminating - process last received command */
208 ProcessBootloaderCommand();
209
210 /* Indicate that the last command has now been processed - free to exit bootloader */
211 WaitForExit = false;
212 }
213
214 /* If the request has a data stage, load it into the command struct */
215 if (SentCommand.DataSize)
216 {
217 while (!(Endpoint_IsOUTReceived()))
218 {
219 if (USB_DeviceState == DEVICE_STATE_Unattached)
220 return;
221 }
222
223 /* First byte of the data stage is the DNLOAD request's command */
224 SentCommand.Command = Endpoint_Read_8();
225
226 /* One byte of the data stage is the command, so subtract it from the total data bytes */
227 SentCommand.DataSize--;
228
229 /* Load in the rest of the data stage as command parameters */
230 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
231 Endpoint_BytesInEndpoint(); DataByte++)
232 {
233 SentCommand.Data[DataByte] = Endpoint_Read_8();
234 SentCommand.DataSize--;
235 }
236
237 /* Process the command */
238 ProcessBootloaderCommand();
239 }
240
241 /* Check if currently downloading firmware */
242 if (DFU_State == dfuDNLOAD_IDLE)
243 {
244 if (!(SentCommand.DataSize))
245 {
246 DFU_State = dfuIDLE;
247 }
248 else
249 {
250 /* Throw away the filler bytes before the start of the firmware */
251 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
252
253 /* Throw away the packet alignment filler bytes before the start of the firmware */
254 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
255
256 /* Calculate the number of bytes remaining to be written */
257 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
258
259 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
260 {
261 /* Calculate the number of words to be written from the number of bytes to be written */
262 uint16_t WordsRemaining = (BytesRemaining >> 1);
263
264 union
265 {
266 uint16_t Words[2];
267 uint32_t Long;
268 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
269
270 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
271 uint8_t WordsInFlashPage = 0;
272
273 while (WordsRemaining--)
274 {
275 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
276 if (!(Endpoint_BytesInEndpoint()))
277 {
278 Endpoint_ClearOUT();
279
280 while (!(Endpoint_IsOUTReceived()))
281 {
282 if (USB_DeviceState == DEVICE_STATE_Unattached)
283 return;
284 }
285 }
286
287 /* Write the next word into the current flash page */
288 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_16_LE());
289
290 /* Adjust counters */
291 WordsInFlashPage += 1;
292 CurrFlashAddress.Long += 2;
293
294 /* See if an entire page has been written to the flash page buffer */
295 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
296 {
297 /* Commit the flash page to memory */
298 boot_page_write(CurrFlashPageStartAddress);
299 boot_spm_busy_wait();
300
301 /* Check if programming incomplete */
302 if (WordsRemaining)
303 {
304 CurrFlashPageStartAddress = CurrFlashAddress.Long;
305 WordsInFlashPage = 0;
306
307 /* Erase next page's temp buffer */
308 boot_page_erase(CurrFlashAddress.Long);
309 boot_spm_busy_wait();
310 }
311 }
312 }
313
314 /* Once programming complete, start address equals the end address */
315 StartAddr = EndAddr;
316
317 /* Re-enable the RWW section of flash */
318 boot_rww_enable();
319 }
320 else // Write EEPROM
321 {
322 while (BytesRemaining--)
323 {
324 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
325 if (!(Endpoint_BytesInEndpoint()))
326 {
327 Endpoint_ClearOUT();
328
329 while (!(Endpoint_IsOUTReceived()))
330 {
331 if (USB_DeviceState == DEVICE_STATE_Unattached)
332 return;
333 }
334 }
335
336 /* Read the byte from the USB interface and write to to the EEPROM */
337 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_8());
338
339 /* Adjust counters */
340 StartAddr++;
341 }
342 }
343
344 /* Throw away the currently unused DFU file suffix */
345 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
346 }
347 }
348
349 Endpoint_ClearOUT();
350
351 Endpoint_ClearStatusStage();
352
353 break;
354 case DFU_REQ_UPLOAD:
355 Endpoint_ClearSETUP();
356
357 while (!(Endpoint_IsINReady()))
358 {
359 if (USB_DeviceState == DEVICE_STATE_Unattached)
360 return;
361 }
362
363 if (DFU_State != dfuUPLOAD_IDLE)
364 {
365 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
366 {
367 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
368 that the memory isn't blank, and the host is requesting the first non-blank address */
369 Endpoint_Write_16_LE(StartAddr);
370 }
371 else
372 {
373 /* Idle state upload - send response to last issued command */
374 Endpoint_Write_8(ResponseByte);
375 }
376 }
377 else
378 {
379 /* Determine the number of bytes remaining in the current block */
380 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
381
382 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
383 {
384 /* Calculate the number of words to be written from the number of bytes to be written */
385 uint16_t WordsRemaining = (BytesRemaining >> 1);
386
387 union
388 {
389 uint16_t Words[2];
390 uint32_t Long;
391 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
392
393 while (WordsRemaining--)
394 {
395 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
396 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
397 {
398 Endpoint_ClearIN();
399
400 while (!(Endpoint_IsINReady()))
401 {
402 if (USB_DeviceState == DEVICE_STATE_Unattached)
403 return;
404 }
405 }
406
407 /* Read the flash word and send it via USB to the host */
408 #if (FLASHEND > 0xFFFF)
409 Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
410 #else
411 Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
412 #endif
413
414 /* Adjust counters */
415 CurrFlashAddress.Long += 2;
416 }
417
418 /* Once reading is complete, start address equals the end address */
419 StartAddr = EndAddr;
420 }
421 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
422 {
423 while (BytesRemaining--)
424 {
425 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
426 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
427 {
428 Endpoint_ClearIN();
429
430 while (!(Endpoint_IsINReady()))
431 {
432 if (USB_DeviceState == DEVICE_STATE_Unattached)
433 return;
434 }
435 }
436
437 /* Read the EEPROM byte and send it via USB to the host */
438 Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
439
440 /* Adjust counters */
441 StartAddr++;
442 }
443 }
444
445 /* Return to idle state */
446 DFU_State = dfuIDLE;
447 }
448
449 Endpoint_ClearIN();
450
451 Endpoint_ClearStatusStage();
452 break;
453 case DFU_REQ_GETSTATUS:
454 Endpoint_ClearSETUP();
455
456 /* Write 8-bit status value */
457 Endpoint_Write_8(DFU_Status);
458
459 /* Write 24-bit poll timeout value */
460 Endpoint_Write_8(0);
461 Endpoint_Write_16_LE(0);
462
463 /* Write 8-bit state value */
464 Endpoint_Write_8(DFU_State);
465
466 /* Write 8-bit state string ID number */
467 Endpoint_Write_8(0);
468
469 Endpoint_ClearIN();
470
471 Endpoint_ClearStatusStage();
472 break;
473 case DFU_REQ_CLRSTATUS:
474 Endpoint_ClearSETUP();
475
476 /* Reset the status value variable to the default OK status */
477 DFU_Status = OK;
478
479 Endpoint_ClearStatusStage();
480 break;
481 case DFU_REQ_GETSTATE:
482 Endpoint_ClearSETUP();
483
484 /* Write the current device state to the endpoint */
485 Endpoint_Write_8(DFU_State);
486
487 Endpoint_ClearIN();
488
489 Endpoint_ClearStatusStage();
490 break;
491 case DFU_REQ_ABORT:
492 Endpoint_ClearSETUP();
493
494 /* Reset the current state variable to the default idle state */
495 DFU_State = dfuIDLE;
496
497 Endpoint_ClearStatusStage();
498 break;
499 }
500 }
501
502 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
503 * discard unused bytes in the stream from the host, including the memory program block suffix.
504 *
505 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
506 */
507 static void DiscardFillerBytes(uint8_t NumberOfBytes)
508 {
509 while (NumberOfBytes--)
510 {
511 if (!(Endpoint_BytesInEndpoint()))
512 {
513 Endpoint_ClearOUT();
514
515 /* Wait until next data packet received */
516 while (!(Endpoint_IsOUTReceived()))
517 {
518 if (USB_DeviceState == DEVICE_STATE_Unattached)
519 return;
520 }
521 }
522 else
523 {
524 Endpoint_Discard_8();
525 }
526 }
527 }
528
529 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
530 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
531 * appropriate handler function.
532 */
533 static void ProcessBootloaderCommand(void)
534 {
535 /* Check if device is in secure mode */
536 if (IsSecure)
537 {
538 /* Don't process command unless it is a READ or chip erase command */
539 if (!(((SentCommand.Command == COMMAND_WRITE) &&
540 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
541 (SentCommand.Command == COMMAND_READ)))
542 {
543 /* Set the state and status variables to indicate the error */
544 DFU_State = dfuERROR;
545 DFU_Status = errWRITE;
546
547 /* Stall command */
548 Endpoint_StallTransaction();
549
550 /* Don't process the command */
551 return;
552 }
553 }
554
555 /* Dispatch the required command processing routine based on the command type */
556 switch (SentCommand.Command)
557 {
558 case COMMAND_PROG_START:
559 ProcessMemProgCommand();
560 break;
561 case COMMAND_DISP_DATA:
562 ProcessMemReadCommand();
563 break;
564 case COMMAND_WRITE:
565 ProcessWriteCommand();
566 break;
567 case COMMAND_READ:
568 ProcessReadCommand();
569 break;
570 case COMMAND_CHANGE_BASE_ADDR:
571 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
572 Flash64KBPage = SentCommand.Data[2];
573
574 break;
575 }
576 }
577
578 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
579 * in the StartAddr and EndAddr global variables.
580 */
581 static void LoadStartEndAddresses(void)
582 {
583 union
584 {
585 uint8_t Bytes[2];
586 uint16_t Word;
587 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
588 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
589
590 /* Load in the start and ending read addresses from the sent data packet */
591 StartAddr = Address[0].Word;
592 EndAddr = Address[1].Word;
593 }
594
595 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
596 * to write subsequent data from the host into the specified memory.
597 */
598 static void ProcessMemProgCommand(void)
599 {
600 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
601 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
602 {
603 /* Load in the start and ending read addresses */
604 LoadStartEndAddresses();
605
606 /* If FLASH is being written to, we need to pre-erase the first page to write to */
607 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
608 {
609 union
610 {
611 uint16_t Words[2];
612 uint32_t Long;
613 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
614
615 /* Erase the current page's temp buffer */
616 boot_page_erase(CurrFlashAddress.Long);
617 boot_spm_busy_wait();
618 }
619
620 /* Set the state so that the next DNLOAD requests reads in the firmware */
621 DFU_State = dfuDNLOAD_IDLE;
622 }
623 }
624
625 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
626 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
627 * blank check command.
628 */
629 static void ProcessMemReadCommand(void)
630 {
631 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
632 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
633 {
634 /* Load in the start and ending read addresses */
635 LoadStartEndAddresses();
636
637 /* Set the state so that the next UPLOAD requests read out the firmware */
638 DFU_State = dfuUPLOAD_IDLE;
639 }
640 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
641 {
642 uint32_t CurrFlashAddress = 0;
643
644 while (CurrFlashAddress < BOOT_START_ADDR)
645 {
646 /* Check if the current byte is not blank */
647 #if (FLASHEND > 0xFFFF)
648 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
649 #else
650 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
651 #endif
652 {
653 /* Save the location of the first non-blank byte for response back to the host */
654 Flash64KBPage = (CurrFlashAddress >> 16);
655 StartAddr = CurrFlashAddress;
656
657 /* Set state and status variables to the appropriate error values */
658 DFU_State = dfuERROR;
659 DFU_Status = errCHECK_ERASED;
660
661 break;
662 }
663
664 CurrFlashAddress++;
665 }
666 }
667 }
668
669 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
670 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
671 */
672 static void ProcessWriteCommand(void)
673 {
674 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
675 {
676 /* Indicate that the bootloader is terminating */
677 WaitForExit = true;
678
679 /* Check if data supplied for the Start Program command - no data executes the program */
680 if (SentCommand.DataSize)
681 {
682 if (SentCommand.Data[1] == 0x01) // Start via jump
683 {
684 union
685 {
686 uint8_t Bytes[2];
687 AppPtr_t FuncPtr;
688 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
689
690 /* Load in the jump address into the application start address pointer */
691 AppStartPtr = Address.FuncPtr;
692 }
693 }
694 else
695 {
696 if (SentCommand.Data[1] == 0x00) // Start via watchdog
697 {
698 /* Start the watchdog to reset the AVR once the communications are finalized */
699 wdt_enable(WDTO_250MS);
700 }
701 else // Start via jump
702 {
703 /* Set the flag to terminate the bootloader at next opportunity */
704 RunBootloader = false;
705 }
706 }
707 }
708 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
709 {
710 uint32_t CurrFlashAddress = 0;
711
712 /* Clear the application section of flash */
713 while (CurrFlashAddress < BOOT_START_ADDR)
714 {
715 boot_page_erase(CurrFlashAddress);
716 boot_spm_busy_wait();
717 boot_page_write(CurrFlashAddress);
718 boot_spm_busy_wait();
719
720 CurrFlashAddress += SPM_PAGESIZE;
721 }
722
723 /* Re-enable the RWW section of flash as writing to the flash locks it out */
724 boot_rww_enable();
725
726 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
727 IsSecure = false;
728 }
729 }
730
731 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
732 * commands such as device signature and bootloader version retrieval.
733 */
734 static void ProcessReadCommand(void)
735 {
736 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
737 const uint8_t SignatureInfo[3] = {AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
738
739 uint8_t DataIndexToRead = SentCommand.Data[1];
740
741 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
742 ResponseByte = BootloaderInfo[DataIndexToRead];
743 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
744 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
745 }
746