1f076530d85111d7a82137b5c88ed0ea28cfda1c
[pub/USBasp.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2014.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
60 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
61 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
62 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
63 */
64 uint16_t MagicBootKey ATTR_NO_INIT;
65
66
67 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
68 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
69 * this will force the user application to start via a software jump.
70 */
71 void Application_Jump_Check(void)
72 {
73 bool JumpToApplication = false;
74
75 #if (BOARD == BOARD_LEONARDO)
76 /* Enable pull-up on the IO13 pin so we can use it to select the mode */
77 PORTC |= (1 << 7);
78 Delay_MS(10);
79
80 /* If IO13 is not jumpered to ground, start the user application instead */
81 JumpToApplication = ((PINC & (1 << 7)) != 0);
82
83 /* Disable pull-up after the check has completed */
84 PORTC &= ~(1 << 7);
85 #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
86 /* Disable JTAG debugging */
87 JTAG_DISABLE();
88
89 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
90 PORTF |= (1 << 4);
91 Delay_MS(10);
92
93 /* If the TCK pin is not jumpered to ground, start the user application instead */
94 JumpToApplication = ((PINF & (1 << 4)) != 0);
95
96 /* Re-enable JTAG debugging */
97 JTAG_ENABLE();
98 #else
99 /* Check if the device's BOOTRST fuse is set */
100 if (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
101 {
102 /* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
103 if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
104 JumpToApplication = true;
105
106 MCUSR &= ~(1 << EXTRF);
107 }
108 #endif
109
110 /* Don't run the user application if the reset vector is blank (no app loaded) */
111 bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
112
113 /* If a request has been made to jump to the user application, honor it */
114 if (JumpToApplication && ApplicationValid)
115 {
116 /* Turn off the watchdog */
117 MCUSR &= ~(1 << WDRF);
118 wdt_disable();
119
120 /* Clear the boot key and jump to the user application */
121 MagicBootKey = 0;
122
123 // cppcheck-suppress constStatement
124 ((void (*)(void))0x0000)();
125 }
126 }
127
128 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
129 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
130 * the loaded application code.
131 */
132 int main(void)
133 {
134 /* Setup hardware required for the bootloader */
135 SetupHardware();
136
137 /* Turn on first LED on the board to indicate that the bootloader has started */
138 LEDs_SetAllLEDs(LEDS_LED1);
139
140 /* Enable global interrupts so that the USB stack can function */
141 GlobalInterruptEnable();
142
143 while (RunBootloader)
144 {
145 CDC_Task();
146 USB_USBTask();
147 }
148
149 /* Disconnect from the host - USB interface will be reset later along with the AVR */
150 USB_Detach();
151
152 /* Unlock the forced application start mode of the bootloader if it is restarted */
153 MagicBootKey = MAGIC_BOOT_KEY;
154
155 /* Enable the watchdog and force a timeout to reset the AVR */
156 wdt_enable(WDTO_250MS);
157
158 for (;;);
159 }
160
161 /** Configures all hardware required for the bootloader. */
162 static void SetupHardware(void)
163 {
164 /* Disable watchdog if enabled by bootloader/fuses */
165 MCUSR &= ~(1 << WDRF);
166 wdt_disable();
167
168 /* Disable clock division */
169 clock_prescale_set(clock_div_1);
170
171 /* Relocate the interrupt vector table to the bootloader section */
172 MCUCR = (1 << IVCE);
173 MCUCR = (1 << IVSEL);
174
175 /* Initialize the USB and other board hardware drivers */
176 USB_Init();
177 LEDs_Init();
178
179 /* Bootloader active LED toggle timer initialization */
180 TIMSK1 = (1 << TOIE1);
181 TCCR1B = ((1 << CS11) | (1 << CS10));
182 }
183
184 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
185 ISR(TIMER1_OVF_vect, ISR_BLOCK)
186 {
187 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
188 }
189
190 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
191 * to relay data to and from the attached USB host.
192 */
193 void EVENT_USB_Device_ConfigurationChanged(void)
194 {
195 /* Setup CDC Notification, Rx and Tx Endpoints */
196 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
197 CDC_NOTIFICATION_EPSIZE, 1);
198
199 Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
200
201 Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
202 }
203
204 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
205 * the device from the USB host before passing along unhandled control requests to the library for processing
206 * internally.
207 */
208 void EVENT_USB_Device_ControlRequest(void)
209 {
210 /* Ignore any requests that aren't directed to the CDC interface */
211 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
212 (REQTYPE_CLASS | REQREC_INTERFACE))
213 {
214 return;
215 }
216
217 /* Activity - toggle indicator LEDs */
218 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
219
220 /* Process CDC specific control requests */
221 switch (USB_ControlRequest.bRequest)
222 {
223 case CDC_REQ_GetLineEncoding:
224 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
225 {
226 Endpoint_ClearSETUP();
227
228 /* Write the line coding data to the control endpoint */
229 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
230 Endpoint_ClearOUT();
231 }
232
233 break;
234 case CDC_REQ_SetLineEncoding:
235 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
236 {
237 Endpoint_ClearSETUP();
238
239 /* Read the line coding data in from the host into the global struct */
240 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
241 Endpoint_ClearIN();
242 }
243
244 break;
245 case CDC_REQ_SetControlLineState:
246 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
247 {
248 Endpoint_ClearSETUP();
249 Endpoint_ClearStatusStage();
250 }
251
252 break;
253 }
254 }
255
256 #if !defined(NO_BLOCK_SUPPORT)
257 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
258 * on the AVR109 protocol command issued.
259 *
260 * \param[in] Command Single character AVR109 protocol command indicating what memory operation to perform
261 */
262 static void ReadWriteMemoryBlock(const uint8_t Command)
263 {
264 uint16_t BlockSize;
265 char MemoryType;
266
267 uint8_t HighByte = 0;
268 uint8_t LowByte = 0;
269
270 BlockSize = (FetchNextCommandByte() << 8);
271 BlockSize |= FetchNextCommandByte();
272
273 MemoryType = FetchNextCommandByte();
274
275 if ((MemoryType != MEMORY_TYPE_FLASH) && (MemoryType != MEMORY_TYPE_EEPROM))
276 {
277 /* Send error byte back to the host */
278 WriteNextResponseByte('?');
279
280 return;
281 }
282
283 /* Check if command is to read a memory block */
284 if (Command == AVR109_COMMAND_BlockRead)
285 {
286 /* Re-enable RWW section */
287 boot_rww_enable();
288
289 while (BlockSize--)
290 {
291 if (MemoryType == MEMORY_TYPE_FLASH)
292 {
293 /* Read the next FLASH byte from the current FLASH page */
294 #if (FLASHEND > 0xFFFF)
295 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
296 #else
297 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
298 #endif
299
300 /* If both bytes in current word have been read, increment the address counter */
301 if (HighByte)
302 CurrAddress += 2;
303
304 HighByte = !HighByte;
305 }
306 else
307 {
308 /* Read the next EEPROM byte into the endpoint */
309 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
310
311 /* Increment the address counter after use */
312 CurrAddress += 2;
313 }
314 }
315 }
316 else
317 {
318 uint32_t PageStartAddress = CurrAddress;
319
320 if (MemoryType == MEMORY_TYPE_FLASH)
321 {
322 boot_page_erase(PageStartAddress);
323 boot_spm_busy_wait();
324 }
325
326 while (BlockSize--)
327 {
328 if (MemoryType == MEMORY_TYPE_FLASH)
329 {
330 /* If both bytes in current word have been written, increment the address counter */
331 if (HighByte)
332 {
333 /* Write the next FLASH word to the current FLASH page */
334 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
335
336 /* Increment the address counter after use */
337 CurrAddress += 2;
338 }
339 else
340 {
341 LowByte = FetchNextCommandByte();
342 }
343
344 HighByte = !HighByte;
345 }
346 else
347 {
348 /* Write the next EEPROM byte from the endpoint */
349 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
350
351 /* Increment the address counter after use */
352 CurrAddress += 2;
353 }
354 }
355
356 /* If in FLASH programming mode, commit the page after writing */
357 if (MemoryType == MEMORY_TYPE_FLASH)
358 {
359 /* Commit the flash page to memory */
360 boot_page_write(PageStartAddress);
361
362 /* Wait until write operation has completed */
363 boot_spm_busy_wait();
364 }
365
366 /* Send response byte back to the host */
367 WriteNextResponseByte('\r');
368 }
369 }
370 #endif
371
372 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
373 * to allow reception of the next data packet from the host.
374 *
375 * \return Next received byte from the host in the CDC data OUT endpoint
376 */
377 static uint8_t FetchNextCommandByte(void)
378 {
379 /* Select the OUT endpoint so that the next data byte can be read */
380 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
381
382 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
383 while (!(Endpoint_IsReadWriteAllowed()))
384 {
385 Endpoint_ClearOUT();
386
387 while (!(Endpoint_IsOUTReceived()))
388 {
389 if (USB_DeviceState == DEVICE_STATE_Unattached)
390 return 0;
391 }
392 }
393
394 /* Fetch the next byte from the OUT endpoint */
395 return Endpoint_Read_8();
396 }
397
398 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
399 * bank when full ready for the next byte in the packet to the host.
400 *
401 * \param[in] Response Next response byte to send to the host
402 */
403 static void WriteNextResponseByte(const uint8_t Response)
404 {
405 /* Select the IN endpoint so that the next data byte can be written */
406 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
407
408 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
409 if (!(Endpoint_IsReadWriteAllowed()))
410 {
411 Endpoint_ClearIN();
412
413 while (!(Endpoint_IsINReady()))
414 {
415 if (USB_DeviceState == DEVICE_STATE_Unattached)
416 return;
417 }
418 }
419
420 /* Write the next byte to the IN endpoint */
421 Endpoint_Write_8(Response);
422 }
423
424 /** Task to read in AVR109 commands from the CDC data OUT endpoint, process them, perform the required actions
425 * and send the appropriate response back to the host.
426 */
427 static void CDC_Task(void)
428 {
429 /* Select the OUT endpoint */
430 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
431
432 /* Check if endpoint has a command in it sent from the host */
433 if (!(Endpoint_IsOUTReceived()))
434 return;
435
436 /* Read in the bootloader command (first byte sent from host) */
437 uint8_t Command = FetchNextCommandByte();
438
439 if (Command == AVR109_COMMAND_ExitBootloader)
440 {
441 RunBootloader = false;
442
443 /* Send confirmation byte back to the host */
444 WriteNextResponseByte('\r');
445 }
446 else if ((Command == AVR109_COMMAND_SetLED) || (Command == AVR109_COMMAND_ClearLED) ||
447 (Command == AVR109_COMMAND_SelectDeviceType))
448 {
449 FetchNextCommandByte();
450
451 /* Send confirmation byte back to the host */
452 WriteNextResponseByte('\r');
453 }
454 else if ((Command == AVR109_COMMAND_EnterProgrammingMode) || (Command == AVR109_COMMAND_LeaveProgrammingMode))
455 {
456 /* Send confirmation byte back to the host */
457 WriteNextResponseByte('\r');
458 }
459 else if (Command == AVR109_COMMAND_ReadPartCode)
460 {
461 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
462 WriteNextResponseByte(0x44);
463 WriteNextResponseByte(0x00);
464 }
465 else if (Command == AVR109_COMMAND_ReadAutoAddressIncrement)
466 {
467 /* Indicate auto-address increment is supported */
468 WriteNextResponseByte('Y');
469 }
470 else if (Command == AVR109_COMMAND_SetCurrentAddress)
471 {
472 /* Set the current address to that given by the host (translate 16-bit word address to byte address) */
473 CurrAddress = (FetchNextCommandByte() << 9);
474 CurrAddress |= (FetchNextCommandByte() << 1);
475
476 /* Send confirmation byte back to the host */
477 WriteNextResponseByte('\r');
478 }
479 else if (Command == AVR109_COMMAND_ReadBootloaderInterface)
480 {
481 /* Indicate serial programmer back to the host */
482 WriteNextResponseByte('S');
483 }
484 else if (Command == AVR109_COMMAND_ReadBootloaderIdentifier)
485 {
486 /* Write the 7-byte software identifier to the endpoint */
487 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
488 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
489 }
490 else if (Command == AVR109_COMMAND_ReadBootloaderSWVersion)
491 {
492 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
493 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
494 }
495 else if (Command == AVR109_COMMAND_ReadSignature)
496 {
497 WriteNextResponseByte(AVR_SIGNATURE_3);
498 WriteNextResponseByte(AVR_SIGNATURE_2);
499 WriteNextResponseByte(AVR_SIGNATURE_1);
500 }
501 else if (Command == AVR109_COMMAND_EraseFLASH)
502 {
503 /* Clear the application section of flash */
504 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
505 {
506 boot_page_erase(CurrFlashAddress);
507 boot_spm_busy_wait();
508 boot_page_write(CurrFlashAddress);
509 boot_spm_busy_wait();
510 }
511
512 /* Send confirmation byte back to the host */
513 WriteNextResponseByte('\r');
514 }
515 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
516 else if (Command == AVR109_COMMAND_WriteLockbits)
517 {
518 /* Set the lock bits to those given by the host */
519 boot_lock_bits_set(FetchNextCommandByte());
520
521 /* Send confirmation byte back to the host */
522 WriteNextResponseByte('\r');
523 }
524 #endif
525 else if (Command == AVR109_COMMAND_ReadLockbits)
526 {
527 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
528 }
529 else if (Command == AVR109_COMMAND_ReadLowFuses)
530 {
531 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
532 }
533 else if (Command == AVR109_COMMAND_ReadHighFuses)
534 {
535 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
536 }
537 else if (Command == AVR109_COMMAND_ReadExtendedFuses)
538 {
539 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
540 }
541 #if !defined(NO_BLOCK_SUPPORT)
542 else if (Command == AVR109_COMMAND_GetBlockWriteSupport)
543 {
544 WriteNextResponseByte('Y');
545
546 /* Send block size to the host */
547 WriteNextResponseByte(SPM_PAGESIZE >> 8);
548 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
549 }
550 else if ((Command == AVR109_COMMAND_BlockWrite) || (Command == AVR109_COMMAND_BlockRead))
551 {
552 /* Delegate the block write/read to a separate function for clarity */
553 ReadWriteMemoryBlock(Command);
554 }
555 #endif
556 #if !defined(NO_FLASH_BYTE_SUPPORT)
557 else if (Command == AVR109_COMMAND_FillFlashPageWordHigh)
558 {
559 /* Write the high byte to the current flash page */
560 boot_page_fill(CurrAddress, FetchNextCommandByte());
561
562 /* Send confirmation byte back to the host */
563 WriteNextResponseByte('\r');
564 }
565 else if (Command == AVR109_COMMAND_FillFlashPageWordLow)
566 {
567 /* Write the low byte to the current flash page */
568 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
569
570 /* Increment the address */
571 CurrAddress += 2;
572
573 /* Send confirmation byte back to the host */
574 WriteNextResponseByte('\r');
575 }
576 else if (Command == AVR109_COMMAND_WriteFlashPage)
577 {
578 /* Commit the flash page to memory */
579 boot_page_write(CurrAddress);
580
581 /* Wait until write operation has completed */
582 boot_spm_busy_wait();
583
584 /* Send confirmation byte back to the host */
585 WriteNextResponseByte('\r');
586 }
587 else if (Command == AVR109_COMMAND_ReadFLASHWord)
588 {
589 #if (FLASHEND > 0xFFFF)
590 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
591 #else
592 uint16_t ProgramWord = pgm_read_word(CurrAddress);
593 #endif
594
595 WriteNextResponseByte(ProgramWord >> 8);
596 WriteNextResponseByte(ProgramWord & 0xFF);
597 }
598 #endif
599 #if !defined(NO_EEPROM_BYTE_SUPPORT)
600 else if (Command == AVR109_COMMAND_WriteEEPROM)
601 {
602 /* Read the byte from the endpoint and write it to the EEPROM */
603 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
604
605 /* Increment the address after use */
606 CurrAddress += 2;
607
608 /* Send confirmation byte back to the host */
609 WriteNextResponseByte('\r');
610 }
611 else if (Command == AVR109_COMMAND_ReadEEPROM)
612 {
613 /* Read the EEPROM byte and write it to the endpoint */
614 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
615
616 /* Increment the address after use */
617 CurrAddress += 2;
618 }
619 #endif
620 else if (Command != AVR109_COMMAND_Sync)
621 {
622 /* Unknown (non-sync) command, return fail code */
623 WriteNextResponseByte('?');
624 }
625
626 /* Select the IN endpoint */
627 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
628
629 /* Remember if the endpoint is completely full before clearing it */
630 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
631
632 /* Send the endpoint data to the host */
633 Endpoint_ClearIN();
634
635 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
636 if (IsEndpointFull)
637 {
638 while (!(Endpoint_IsINReady()))
639 {
640 if (USB_DeviceState == DEVICE_STATE_Unattached)
641 return;
642 }
643
644 Endpoint_ClearIN();
645 }
646
647 /* Wait until the data has been sent to the host */
648 while (!(Endpoint_IsINReady()))
649 {
650 if (USB_DeviceState == DEVICE_STATE_Unattached)
651 return;
652 }
653
654 /* Select the OUT endpoint */
655 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
656
657 /* Acknowledge the command from the host */
658 Endpoint_ClearOUT();
659 }
660